• Title/Summary/Keyword: UWB antenna

Search Result 234, Processing Time 0.022 seconds

A planar half-disk UWB antennas having a notch function (노치 기능을 가지는 반원 형태의 UWB 안테나)

  • Lee, Hyo-K.;Jang, Mi-H.;Lee, Yoon-J.;Park, Jong-K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • In this paper, a planar half-circle shape ultra-wideband(UWB) antenna fed by CPW is designed, fabricated and measured for UWB communications. Within the UWB band(3.1 GHz $\sim$ 10.6 GHz), 5.15 GHz $\sim$ 5.825 GHz frequency band is used by IEEE 802.lla WLAN applications. It may be necessary to notch out this band to avoid interference with IEEE 802.lla WLAN. Therefore, we have proposed three kinds of UWB antennas having a notch function, such as a rectangular slot, a hat-shaped slot, a circle-shaped slot. The notch frequency of the proposed antenna can be adjusted by controlling the slot length or slot width. From the measured results, the proposed antennas show a good gain flatness except the IEEE 802.lla WLAN frequency band and have a reasonable agreement with simulated results.

  • PDF

A Printed, Wideband Folded Monopole Antenna Coupling with a Parasitic Inverted-L Element for Bluetooth, WiMAX and UWB Systems (Bluetooth, WiMAX, UWB 시스템용 역 L형 무급전 소자 결합 프린트형 광대역 폴디드 모노폴 안테나)

  • Kim, Ki-Baek;Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1101-1110
    • /
    • 2011
  • This paper presents a printed, wideband folded monopole antenna for laptop and tablet computer applications. The proposed antenna is designed to cover bandwidth(2.3~10.6 GHz) of Bluetooth, WiMAX, and UWB system by using the printed folded monopole antenna having asymmetrical line width coupling with a parasitic inverted- L element. Also, wireless LAN band(5.15~5.85 GHz) which interferes with UWB system is rejected by inserting half-wavelength open stub in the folded monopole antenna. -10 dB bandwidth of the fabricated wideband antenna is 2.27~10.6 GHz (4.7:1) and -10 dB band-rejected bandwidth is measured as 700 MHz(5.15~5.85 GHz, 12.72 %). The gain and efficiency of the antenna except for the rejected band are higher than 3.93 dBi and 91.89 % and are measured as -2 dBi and 14.65 % at 5.5 GHz which is band-rejected frequency. The size of the antenna is suitable to install for small space of tablet and laptop computers as 12.75(1 ${\lambda}$/10)${\times}$12(1 ${\lambda}$/11) $mm^2$(${\lambda}$ is free space wavelength at 2.3 GHz). Therefore, we verified that the designed antenna is appropriate for wideband antenna of tablet and laptop PC applications.

Design and Analysis of Ultra-WideBand(UWB) Microstrip patch Dipole Antenna (초광대역(UWB) 마이크로스트립 패치 다이폴 안테나 설계 및 분석)

  • Chang Soo-Keun;Ko Kwang Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.193-196
    • /
    • 2004
  • This paper have a whole azimuth Omni-directional radiation pattern and will become the good radiation efficiency for applies in the steeve antenna and form which is the appearance. We contain by whole course of actual implement model to antenna design. And we will confirm the efficiency the analysis of the antenna to design and through a simulated experiment according to the implementation Ideal characteristic of the antenna to be used between 3.1 and 10.6 GHz of UWB.

  • PDF

A Study on Parabolic Edge Planar Monopole Antenna for UWB Communication (초광대역(UWB) 통신을 위한 포물선 엣지 형태의 평면 모노폴 안테나에 대한 연구)

  • Chang, Tae-Soon;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.612-620
    • /
    • 2008
  • In this parer, parabolic edge planar monopole antenna for UWB communication is presented. The antenna have broadband property structurally through planar monopole and ground which have parabolic edge. It is designed close to self-complementary structure as changing curvature of edge of monopole and ground. Monopole and ground of proposed antenna exist on coplanar plane, and excite as coaxial feeding. It used FR4 dielectric substrate of ${\varepsilon}_r=4.4$, and the size is $26{\times}31{\times}1.6mm$. Return loss is more than 10 dB in $3.1{\sim}10.6GHz$. Radiation pattern is about the same that of dipole antenna at all frequency. At measured result, max gain is $1.37{\sim}6.02dBi$ at E-plane.

A novel circular fractal ring UWB monopole antenna with dual band-notched characteristics

  • Kayhan Celik
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.218-226
    • /
    • 2024
  • This paper presents a novel circular fractal ring monopole antenna for ultra-wideband (UWB) hardware with dual band-notched properties. The proposed antenna consists of four crescent-shaped nested rings, a tapered feeding line at the front of the dielectric material, and a semicircular ground plane on the backside. In this design, the nested rings are used both as a radiation element and a band rejection element. The proposed antenna has a bandwidth of 9.03 GHz, which works efficiently in the range of 2.63 GHz-11.66 GHz with the dual notched bands of Worldwide Interoperability for Microwave Access (WiMAX) at 3.15 GHz-3.66 GHz and wireless local area network (WLAN) at 4.9 GHz-5.9 GHz, respectively. The antenna has a compact size of 20 mm × 30 mm × 1 mm (0.177 × 0.265 × 0.0084 λ0) and is implemented using a flame-retardant type 4 (FR4) material. It has a maximum gain of approximately 4 dB in its operating range, and experimental results support the simulation predictions with high accuracy. The findings of this study imply that the designed antenna can be utilized in UWB applications.

SRR and CSRR Loaded UWB Antenna with Tri-Band Notch Capability (SRR과 CSRR을 이용한 삼중 대역 차단 초광대역 안테나)

  • Yoo, Min-Yeong;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.320-327
    • /
    • 2012
  • In this paper, a novel ultra wide band(UWB) antenna with tri-band notch capability is proposed. The proposed antenna can reject WiMAX(3.3~3.7 GHz), WLAN IEEE 802.11a/n(5.15~5.825 GHz), and ITU(8.025~8.4 GHz) bands. Band rejection capability is achieved only split ring resonators(SRRs) and complementary SRRs(CSRRs). The SRR under the radiating patch, the CSRR loaded on the radiating patch, and the CSRRs on the ground of the CPW feeding reject the WiMAX, WLAN, and ITU bands, respectively. The simulation and measurement results demonstrate the performances of the proposed antenna.

UWB/Bluetooth for a High Speed Wireless Communication Network Dual Band Microstrip Antenna Design (해상 고속 무선 통신망을 위한 UWB/Bluetooth용 이중대역 마이크로스트립 안테나 설계)

  • Oh, Mal-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.960-966
    • /
    • 2018
  • Communication antennas used at sea have been developed remarkably. However, the speed of this development is insufficient when compared with user demands. Therefore, we developed an antenna for UWB/Bluetooth that operates on 3 [GHz] and 5.72 [GHz] bands in order to use the high-speed communication network system which improved antenna miniaturization, gain and radiation patterns. To improve bandwidth, a microstrip patch antenna was selected and CST Microwave Studio 2014 program was used. Through the program, we calculated the slot width, length, transmission line width, etc. using a theoretical formula at each step. These figures were checked through simulation to see if they meet production standards. UWB for high-speed wireless communication for short-range communication at sea, Bluetooth for exchanging information at a short distance by connecting each device, and corresponding technology can be easily utilized.

The Improvement of Performance and Structure of the MIMO-UWB System Based on Indoor Channel Modeling (실내 채널 모델링에 기반한 MIMO-UWB 시스템의 구조 및 성능 개선)

  • Kim, Su-Nam;Jung, Hee-Seok;Jung, Kyeong-Hoon;Kim, Ki-Doo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.88-95
    • /
    • 2007
  • In this paper, we suggest the novel MIMO-UWB transceiver structure which can easily be adapted for various MIMO schemes and presents MIMO channel model for obtaining correlation characteristics among channels to analyze the performance. From the indoor channel modeling, we obtain the interferences among antennas due to the MIMO channel formation through numerical simulation and analyze the performance of MIMO-UWB system under frequency selective fading. Especially, to reduce the excessive computational complexity due to the inverse matrix computation of channel transfer function, we take the scheme combining the transmitting signals estimated from each receiving antenna after recovering each transmitting antenna signal from a receiving antenna.

PD measuring on MV XLPE Calble by Using UWB Antenna (UWB 안테나를 이용한 MV급 전력케이블의 부분방전 측정 연구)

  • Yang, Sang-Hyun;Lim, Kwang-Jin;Lee, Yong-Sung;Park, Noh-Joon;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.267-268
    • /
    • 2008
  • This paper presents compact low frequency ultra-wide band(UWB) sensor design and studying of the partial discharge diagnosis by sensing electromagnetic pulse emitted from the partial discharge source with new designed UWB sensor. In this study, we designed new type of compact low frequency UWB sensor based on microstrip antenna technology to detect both low frequency and high frequency band of partial discharge signal. And experiments of offline PD testing on in medium voltage (22.9kV) underground cable and mention the comparative results with the traditional HFCT as a reference sensor in the laboratory. In the series of comparative test, the calibration signal injection test provided with conventional IEC 60270 method and high voltage injection testing are included.

  • PDF

Compact Band-notched UWB Antenna Design Based On Transmission Line Model

  • Zhu, Xiaoming;Yang, Xiaodong;Chen, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.338-343
    • /
    • 2015
  • In order to avoid the interference from existing narrowband communication systems, this paper proposes a compact band-notched UWB (ultra wideband) antenna with size of $12mm{\times}22mm{\times}1.6mm$. Transmission line model is applied to analyzing wide impedance matching characteristic of the modified base antenna, which has a gradual stepped impedance feeder structure. The proposed antenna realizes dual band-notched function by combining two biased T-shaped parasitic elements on the rear side with a window aperture on the radiation patch. The simulation current distributions of the antenna reflect resonant suppression validity of the two methods. In addition, the measured radiation characteristics demonstrate the proposed antenna prevents signal interference from WLAN (5.15-5.825GHz) and WiMAX (3.4-3.69GHz) effectively, and the measured patterns show the antenna omnidirectional radiation in working frequencies.