• Title/Summary/Keyword: UWB 주파수 대역

Search Result 132, Processing Time 0.016 seconds

Miniaturization of Planar Monopole Antenna with Parabolic Edge by Scaling Method (스케일링 기법을 이용한 포물선 엣지 형태의 평면형 모노폴 안테나의 소형화)

  • Chang, Tae-Soon;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • In this paper, minimizing of a parabolic edge planar monopole antenna by scaling method is presented. With the aid of a matching step and discontinuous CPW, the antenna easily adjusts the impedance matching. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The dimensions of the antenna are $26mm{\times}31mm{\times}1.6mm$. A return loss value of more than 10dB was found in the 2.37GHz to 10.52GHz (8.15GHz) range of the antenna fed by the discontinuous CPW. The radiation pattern is about the same as that of the dipole antenna at all frequencies. Configuration elements of the antenna except feed part were reduced into the same rate. So, the size of the antenna was decreased and a broadband property was maintained. Therefore, the self-complementary characteristic of the antenna was confirmed. While satisfying the UWB band, having the smallest size in the antenna miniaturized by scaling;when scale was 0.6. The dimensions of the antenna are $15.6mm{\times}18.6mm{\times}1.6mm$. The return loss was more than 10 dB of the measured result in the range of 3.07GHz to 12.59GHz (9.52GHz).

Design of Vivaldi Antenna suitable for Impulse-like Waveform Radiation (임펄스 유사 신호 복사에 적합한 비발디 안테나 설계)

  • Doojin Lee;Bong Jin Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2024
  • In this paper, the method to design the antenna, which is suitable for an impulse-like waveform radiation, is presented. In general, the impulse-like waveform has its spectrum of around sub GHz bandwidth and the antenna should be properly designed for not only operating wide-bandwidth also reflecting the time domain characteristics for near-zone impulse radar applications. In this regard, Vivaldi antenna has been designed and characterized in terms of short-pulse radiating aspects in the time domain and verified by measured results. The designed antenna has shown to be operating within wide-bandwidth and to be stable for the input impedance from 1.8 to more than 10GHz. The far-zone radiating waveform has been investigated on each plane at the interval of 30degree and the designed antenna has shown to be a directive characteristic. It can be seen that those results proposed are widely applicable to the near area sensing applications such as ground-penetrating radar.