• Title/Summary/Keyword: UV-visible spectrum

Search Result 126, Processing Time 0.035 seconds

Optical and Electrical Characteristics of viologen-diTCNQ thin film prepared by Langmuir-Blodgett Technique (LB법을 이용한 viologen-diTCNQ 박막의 광학적 및 전기적 특성)

  • 이용수;신동명;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.45-48
    • /
    • 1997
  • Enhancing the electrical conductivity of the ultrathin organic films is one of the important factors for the development of molecular electronic devices. The Langmuir-Blodgett(LB) technique has recently been attracted interest as the a method of deposition ultrathin films. We have fabricated N-docosyl-N'-methyl viologen-diTCNQ(DMVT) anion radical LB film and investigated the optical and electrical conductivity. We have measured UV/visible and FT-lR spectrum. In ESR spectrum, we confirmed that a half-amplitude linewidth is clearly dependent on both temperature and incident angle, which indicates conducting species change. The in-plane electrical conductivity of 21 layers is approximately 1.37$\times$10$^{-6}$ (S/cm).

  • PDF

Emitting characteristics of poly(3-octylthiophene) electroluminescent devices (Poly(3-octylthiophene) 전계발광소자의 발광특성)

  • Seo, Bu-Wan;Kim, Ju-Seung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.131-134
    • /
    • 2000
  • Electroluminescent[EL] from conjugated polymers has recently received great attention because polymer light-emitting diodes[LEDs] clearly have potential for applications such as large-area displays. The operation of polymer LEDs is based on double injection of electrons and holes from the electrodes, followed by formation of excitons whose radiative decay results in light emission at wavelength characteristic to the material In this paper, we fabricated the single layer EL device using poly(3-octylthiophene)[P3OT] as emitting material. The orange-red light was clearly visible in a dark room Maximum peak wavelength of EL spectrum saw at 640nm in accordance with photon energy 1.9eV. And we know that ionization energy of P3OT is 4.7eV from the cyclic voltammetry.

  • PDF

Fabrication and Properties of OLEDs using PECCP Langmuir-Blodgett(LB) Films (PECCP LB 박막을 이용한 유기 발광 타이모드의 제작과 이의 특성)

  • Lee, Ho-Sik;Lee, Won-Jae;Park, Myung-Gyu;Songe, Min-Jeng;Park, Jong-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.831-834
    • /
    • 2000
  • Characteristics of organic light-emitting diodes(OLEDs) were studied with devices made by PECCP[poly(3,6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)] Langmuir-Blodget(LB) films. The emissive organic material was synthesized and named PECCP, which has a strong electron donor group and an electron accepter group in main chain repeated unit. The LB technique was employed to investigate the identification of the recombination zone in the ITO/PECCP LB films/Alq$_3$/Al structure by varying the LB film thickness. PECCP was considered as an emissive layer and Alq$_3$was used as an electron-transport layer. We measured current-voltage(I-V) characteristics, UV/visible absorption, PL spectrum, and EL spectrum of those devises.

  • PDF

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying (기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성)

  • Woo S.H.;Kim W.W.;Kim S.J.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride

  • Hu, Pengwei;Zheng, Dewen;Xian, Yuxi;Hu, Xianhai;Zhang, Qian;Wang, Shanyu;Li, Mingjun;Cheng, Congliang;Liu, Jin;Wang, Ping
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.325-330
    • /
    • 2021
  • Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.

Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques (UV-Visible 흡수분광학법을 이용한 염산매질내 Pu 산화상태 측정)

  • Lee, Myung-Ho;Suh, Mu-Yeol;Park, Kyoung-Kyun;Park, Yeong-Jae;Kim, Won-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with $NH_2OH$ HCl, and oxidized to Pu(IV) and Pu(VI) with $NaNO_2$ and $HClO_4$, respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with $NH_2OH$ HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 m and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-Vis absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  • PDF

Electrochemical Properties of Binuclear Tetradentate Schiff Base Cobalt(II), Nickel(II) and Copper(II) Complexes in Nonaqueous Solvents. (V) (비수용매에서 이핵성 네자리 Schiff Base Cobalt(II), Nickel(II) 및 Copper(II) 착물들의 전기화학적 성질 (제 5 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Lee Song-Ju;Kim Chan-Young;Rim Chae-Pyeong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.709-719
    • /
    • 1992
  • We synthesized the binuclear tetradentate Schiff base cobalt(II), nickel(II) and copper(II) complexes such as [Co(II)_2(TSBP)(L)_4], [Ni(II)_2(TSBP)(II)_4] and [Cu(II)_2(TSBP)] (TSBP: 3,3',4,4'-tetra(salicylideneimino)-1,1'-biphenyl, L: Py, DMSO and DMF). We identified the binucleated structure of these complexes by elemental analysis, IR-spectrum, UV-visible spectrum, T.G.A. and D.S.C. According to the results for cyclic voltammogram and differential pulse polarogram of 1 mM complexes in nonaqueous solvents included 0.1M TEAP-L (L; Py, DMSO and DMF) as supporting electrolyte, it was found that diffusionally controlled redox processes of four steps through with one electron for binucleated Schiff base Cobalt(II) complex was Co(III)_2 {^\longrightarrow \\_\longleftarrow^e^-}Co(III)Co(II)_2{^\longrightarrow \\_\longleftarrow^e^-}Co(II){^\longrightarrow \\_\longleftarrow^e^-}Co(I){^\longrightarrow \\_\longleftarrow^e^-}Co(I)_2 and two steps with one electron for Nickel(II) and Copper(II) complexes were M(II)_2 {^\longrightarrow \\_\longleftarrow^e^-}M(I)M(I){^\longrightarrow \\_\longleftarrow^e^-}M(I)_2 (M; Ni and Cu) in nonaqueous solvents.

  • PDF

Spectral Studies of Conformational Change at the Active Site of Mutant O-acetylserine Sulfhydrylase-A (C43S)

  • Park, Joon-Bum;Kim, Sung-Kun;Yoon, Moon-Young
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 1996
  • The cysteine 43, potentially important in the activity of O-acetylserine sulfhydrylase (OASS) from Salmonella typhimurium, has been changed to serine. This mutant enzyme (C43S) has been studied in order to gain insight into the structural basis for the binding of inhibitor, substrate and product. UV-visible spectra of C43S exhibit the same spectral change in the presence of OAS as that observed with wild type enzyme, indicating C43S will form an ${\alpha}$-aminoacrylate Schiff base intermediate. At pH 6.5, however, the deacetylase activity of C43S is much higher than wild type enzyme indicating that cysteine 43 plays a role in stabilizing the ${\alpha}$-aminoacrylate intermediate. The fluoroscence spectrum of C43S exhibits a ratio of emission at 340 to 502 nm of 16.9, reflecting the lower fluorescence of PLP and indicating that the orientation of cofactor and tryptophan are different from that of the wild type enzyme. The emission spectrum of C43S in the presence of OAS gives two maxima at 340 and 535 nm. The 535 nm emission is attributed to the fluoroscence of the ${\alpha}$-aminoacrylate intermediate. The visible circular dichroic spectrum was similar to wild type enzyme, but the negative effect observed at 530~550 nm and the molar ellipicity values for the mutant are decreased by about 50% compared to wild type enzyme. The circular dichroic and fluoroscence studies suggest binding of the cofactor is less asymmetric in C43S than in the wild type enzyme.

  • PDF

Enhanced Photocatalytic Efficiency of Nanoscale NiS2/TiO2 Catalysts Synthesized by Hydrothermal and Sol-gel Method

  • Zhu, Lei;Meng, Ze-Da;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • To improve the visible-light induced photocatalytic application performances of $TiO_2$, in this study, the $NiS_2$ modied $TiO_2$ composites were prepared by two methods: hydrothermal method and sol-gel method. The composites were denoted as hs-$NiS_2$/$TiO_2$, and sg-$NiS_2$/$TiO_2$ and characterized by XRD, UV-vis absorbance spectra, SEM, TEM, EDX, and BET analysis. The photocatalytic activities under visible light were investigated by the degradation of methyl orange (MO). The photodegradation rate of methyl orange under visible light with $NiS_2$/$TiO_2$ composites was markedly higher than that of pure $TiO_2$, and the effect of hs-$NiS_2$/$TiO_2$ composites was better than that of sg-$NiS_2$/$TiO_2$. The results indicate that the hydrothermal process could partly inhibit the agglomeration of $NiS_2$/$TiO_2$. Thus, the dispersion of nanoparticles was improved, and that the promoting effect of $NiS_2$ could extend the light absorption spectrum toward the visible region.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.