• Title/Summary/Keyword: UV-persulfate

Search Result 14, Processing Time 0.023 seconds

Degradation of TCE by Persulfate Oxidation with Various Activation Methods (heat, Fe2+, and UV) for ex-situ Chemical Oxidation Processes (Ex-situ 화학적 산화처리 적용을 위하여 다양하게 활성화(heat, Fe2+, UV)된 persulfate를 이용한 TCE 분해에 대한 연구)

  • Kim, Han-Sol;Do, Si-Hyun;Park, Ki-Man;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.43-51
    • /
    • 2012
  • Rreactivity of persulfate (PS) for oxidation of TCE under various conditions such as heat, $Fe^{2+}$, and UV was investigated. It was found that degradation rate of TCE increased with increasing temperature from 15 to $35^{\circ}C$. At pH 7.0, the rate constants (k) at 15, 25, 30, and $35^{\circ}C$ were 0.07, 0.30, 0.74, and $1.30h^{-1}$, respectively. For activation by $Fe^{2+}$, removal efficiency of TCE increased with increasing $Fe^{2+}$ concentration from 1.9 mM to 11 mM. The maximum removal efficiency of TCE was approximately 85% when pH of the solution dropped from 7.0 to 2.5. Degradation of TCE by UV-activated PS was the most effective, showing that the degradation rate of TCE increased with inreasing PS dosage; the rate constants (k) at 0.5, 2.5, and 10 mM were 34.2, 40.5, and $55.9h^{-1}$, respectively. Our results suggest that PS activation by UV/PS process could be the most effective in activation processes tested for TCE degradation. For oxidation process by PS, however, pH should be observed and adjusted to neutral conditions (i.e., 5.8-8.5) if necessary.

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

The Study of Ibuprofen Degradation Properties by Combination of Wave Energy (Ultrasound, Ultraviolet) and Persulfate Ion (파 에너지 (자외선, 초음파)/과황산나트륨을 이용한 이부프로펜 분해특성 연구)

  • Na, Seungmin;Ahn, Yungyong;Cui, Mingcan;Son, Younggu;Khim, Jeehyeong
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.963-972
    • /
    • 2014
  • In this study, ibuprofen(IBP) degradation by the photochemical ($UV/S_2O{_8}^{2-}$) and sonochemical ($US/S_2O{_8}^{2-}$) processes was examined under various parameters, such as UV ($10{\sim}40{\pm}5W/L$) and US ($50{\sim}90{\pm}5W/L$) power density, optimum dosage of persulfate ion ($S_2O{_8}^{2-}$), temperature ($20{\sim}60^{\circ}C$) and anions effect ($Cl^-$, $HCO_3{^-}$, $CO{_3}^{2-}$). The pseudo-first-order degradation rate constants were in the order of $10^{-1}$ to $10^{-5}min^{-1}$ depending on each processes. The synergistic effect of IBP degradation in $UV/S_2O{_8}^{2-}$ and $US/S_2O{_8}^{2-}$ processes could investigated, due to the generation of $SO_4{^-}$ radical. This result can confirm from the produced $H_2O_2$ and $SO{_4}^{2-}$ concentration in each processes. IBP degradation rate affected by the $S_2O{_8}^{2-}$ dosage, temperature, power and anion existence parameters. In particular, IBP degradation rate increased with the increase of the temperature ($60^{\circ}C$) and applied power density (UV:$40{\pm}5W/L$, US:$90{\pm}5W/L$). On the other hand, anions effect on the IBP degradation was negative, due to the anion play as a the scavenger of radical.

Sludge solubilization using sono-activated persulfate (활성 과황산염을 이용한 슬러지 가용화)

  • Moon, Sang-Jae;Nam, Se-Yong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.35-40
    • /
    • 2021
  • In order to investigate the degree of solubilization of sewage sludge using sono-activated persulfate(UV/PP), VSS reduction rate, solubilization rate and extracellular polymeric substances were measured. Ultrasonic(US) and alkali·ultrasonic method using sodium hydroxide(US/SH) were compared. Under the persulfate·ultrasonic conditions, the VSS reduction rate and the solubilization rate increased to 27.6% and 58.9%, respectively. TB-EPS as Carbohydrate and Protein were extracted by 770 mg/L and 2,162 mg/L. Compared to the other methods, US and US/SH, the VSS reduction rate and solubilization rate were higher. And also, according to the TB-EPS values, cell wall destruction was more efficient.

Sensitized effects of photo-sensitized oxidation in water under UV irradition (수용액에서 UV를 이용한 광증감 산화반응시 증감제에 따른 증감효과에 관한 연구)

  • Lee, Chun Sik;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.23-31
    • /
    • 1998
  • Photo-sensitized oxidation of benzene in aqueous solution was conducted with persulfate, nitrate, nitrite, sulfate and chloride as sensitizers.In the photo-sensitized oxidation of benzene persulfate, nitrate and nitrite could act as sensitizers, while no detectable effects could be observed with sulfate and chloride. With increasing nitrite concentration the photo-sensitized oxidation of benzene ran through a maximum value and decreased thereafter with increasing nitrite concentration. A build-up of nitrite ions seemed to scavenge hydroxyl radicals. When nitrite was present with other ions, nitrite inhibited the photo-sensitized oxidation of benzene. Phenol and biphenyl were identified as intermediate.

  • PDF

Photo-sensitized oxidation of benzene in water under UV irradition (자외선 조사에 의한 벤젠의 광증감 산화처리에 관한 연구)

  • Lee, Chun Sik;Lee, Dong-Keun
    • Clean Technology
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1998
  • The photo-sensitized oxidation of benzene in water was investigated under various reaction conditions using persulfate, sulfate, nitrate, nitrite and chloride ions as sensitizers. Persulfate ion was proved to be the most effective sensitizer, while sulfate and nitrite could not play any sensitizing role on the benzene photooxidation. When exited together with other ions, the nitrite ion inhibited the photooxidation of benzene by quenching the produced hydroxyl radicals.

  • PDF

Influences of Environmental Conditions and Refractory Organic Matters on Organic Carbon Oxidation Rates Measured by a High Temperature Combustion and a UV-sulfate Methods (다양한 환경요인과 난분해성 유기물에 따른 고온산화 및 UV산화방식 총 유기탄소 산화율 변화)

  • Jung, Heon-Jae;Lee, Bo-Mi;Lee, Keun-Heon;Shin, Hyun-Sang;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.98-107
    • /
    • 2016
  • This study examined the effects of environmental conditions and the presence of refractory organic matter on oxidation rates of total organic carbon (TOC) measurements based on high temperature combustion and ultraviolet-sulfate methods. Spectroscopic indices for prediction of oxidation rates were also explored using the UV spectra and fluorescence excitation-emission matrix (EEM) of humic acids. Furthermore, optimum TOC instrument conditions were suggested by comparing oxidation rates of a standard TOC material under various conditions. Environmental conditions included salts, reduced ions, and suspended solids. Salts had the greatest influence on oxidation rates in the UV-sulfate method. However, no effect was detected in the high temperature combustion method. The UV-sulfate method showed lower humic substance oxidation rates, refractory natural organic matter, compared to the other methods. TOC oxidation rates for the UV-sulfate method were negatively correlated with higher specific-UV absorbance, humification index, and humic-like EEM peak intensities, suggesting that these spectroscopic indices could be used to predict TOC oxidation rates. TOC signals from instruments using the UV-sulfate method increased with increasing chamber temperature and increasing UV exposure durations. Signals were more sensitive to the former condition, suggesting that chamber temperature is important for improving the TOC oxidation rates of refractory organic matter.

Synthesis and Characterization of Soluble Polyaniline and TiO2 Composite

  • Kim, Byoung-Ju;Kang, Kwang-Sun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.71-74
    • /
    • 2015
  • Soluble polyaniline was synthesized by attaching titanium isoproxide ($Ti(OPr)_4$) to the amine group of the aniline. Approximately 1 to 1 molar ratio of aniline and $Ti(OPr)_4$ was mixed and polymerized with ammonium persulfate. The FTIR result showed clear difference between $TiO_2$-aniline composite ($TiO_2An$) and $TiO_2$-polyaniline composite ($TiO_2PAn$). Although the $TiO_2An$ had negligible UV-visible absorption, the $TiO_2PAn$ showed strong absorption in the UV-visible region. Photoluminescence (PL) peaks of $TiO_2An$ were shifted toward red with the reduction of the excitation energy, which could be due to the multiple emission centers. The luminescence peak shift stopped at 501 nm. The PL spectra of $TiO_2PAn$ exhibited three emission peaks at 2.88 eV (430 nm), 2.48 eV (501 nm) and 2.22 eV (558 nm). The new emission center (2.22 eV) was observed after polymerization. Field emission scanning electron microscope image showed crack-free composite film.

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.

Photodecomposition of Tar Colorant With Zinc Oxide Suspension (산화아연 현탁액에 의한 타르색소의 광분해)

  • Jeong, Kap-Seop
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1155-1161
    • /
    • 2006
  • The characteristics of photocatalytic degradation of tar colorants such as brilliant blue FCF(BBF) and tartrazine(TTZ) with zinc oxide suspension was studied in a batch reactor under irradiation of ultra-violet ray. Photocatalytic degradation of TTZ with ZnO was more higher than that of BBF, and was Increased with dosage of ZnO below 5g, but was nearly affected with initial pH of two tar colorants aqueous solution. Ammonium persulfate was more effective oxidant than potassium bromate which slightly increased the degradation of BBF, but not increased the degradation of TTZ. The photocatalytic degradation rates of BBF and TTZ were pseudo-first order with rate constants of 0.0066, 0.0092 and $0.015min^{-1}$ for BBF, 0.042, 0.017 and $0.110min^{-1}$ for TTZ at the dosage of 1, 2 and 5g ZnO, respectively.