• Title/Summary/Keyword: UV-led

Search Result 329, Processing Time 0.027 seconds

Comparison of blue light, visible light and infrared light transmittance difference of shading Goggles (청색광, 가시광선 및 적외선이 차광보안경에 따라 투과되는 투과율 차이 비교)

  • Jung, In-Ho;Lee, Sang-Deok;Lee, Sook-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.65-71
    • /
    • 2020
  • Purpose: To know the transmittance of light when wearing shading goggles and to protect eyes from blue light emitted from dental scanner when using CAD/CAM works or inducing polymerization reactions of dental resin with curing unit and infrared light occurred when melting Dental precious metal and non-precious metal alloys. Methods: By measuring and comparing the average transmittances of blue light, visible light and infrared ight by using UV-Vis Spectrophotometer analysis measuring instrument, I compared 3 GREEN Color Goggles worn when casting Dental precious metal and non-precious metal alloys, and compared each of YELLOW, ORANGE Color Goggles worn when using Dental CAD/CAM scanners and Light Curing(LED) the Dental resin. Results: In blue light range, YELLOW Color Goggles are more effective than ORANGE Color Goggles. In infrared light range, No.12 Goggles are more effective than No.10 and No.11 Goggles. Conclusion: When wearing blue light shading goggles to avoid harmful blue light occurred in using dental scanner and curing light, and when wearing infrared light shading goggles to avoid harmful infrared light during casting, to avoid the Side Effects like transmittance rate of blue light and infrared light goggles becomes too high to block appropriate amount of harmful light or too low that causing lower image clarity.

Synthesis and Luminescence Properties of Sr/SmSi5N8:Eu2+ Phosphor for White Light-Emitting-Diode

  • Luong, Van Duong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.192-197
    • /
    • 2014
  • Red-emitting nitride phosphors recently attracted considerable attention because of their high thermal stability and high color rendering index properties. For excellent phosphor of white light-emitting-diode, ternary nitride phosphor of $Sr/SmSi_5N_8:Eu^{2+}$ with different $Eu^{2+}$ ion concentration were synthesized by solid state reaction method. In this work, red-emitting nitride $Sr/SmSi_5N_8:Eu^{2+}$ phosphor was successfully synthesized by using multi-step high frequency induction heat treatment. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Sr/SmSi_5N_8:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Sr/SmSi_5N_8:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 300 - 550 nm, namely from UV to visible area with distinct enhanced emission peaks. With an increase of $Eu^{2+}$ ion concentration, the peak position of emission in spectra was red-shifted from 613 to 671 nm. After via multi-step heat treatment, prepared phosphor showed excellent luminescence properties, such as high emission intensity and low thermal quenching, better than commercial phosphor of $Y_3Al_5O_{12}:Ce^{3+}$. Using $Eu_2O_3$ as a raw material for $Eu^{2+}$ dopant with nitrogen gas flowing instead of using commercial EuN chemical for $Sr/SmSi_5N_8:Eu^{2+}$ synthesis is one of characteristic of this work.

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Effects of U.V. Irradiation on the Physical Properties of Fabrics Treated with Eco-friendly Persimmon Juice -Silk and Nylon Fabrics- (친환경 감물가공 소재의 자외선 조사에 의한 물리적 특성변화에 대한 연구 -견 및 나일론 직물-)

  • Kim, Jimin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.4
    • /
    • pp.120-134
    • /
    • 2015
  • This study aimed to determine the physical properties of silk and nylon fabrics that are treated with persimmon juice in accordance with irradiation time of ultraviolet spectrum. Persimmon juice dyeing has the advantage of using the tannin component of the persimmon. Tannin plays an important role in inhibiting photodegradation of fibers or polymers. Among fibrous materials, silk and nylon are prone to deterioration by light. Hence, this study aimed to reduce these weaknesses of silk and nylon by applying persimmon juice treatment. We accordingly carried out investigation and experiments on ultraviolet irradiation, and physical characteristics of treated fabrics. The persimmon juice treatment process led to increased weight and thickness. In addition, the air permeability of silk fabric was increased, as compared to the control specimen; whereas, that of nylon fabric was decreased. Both drape stiffness and flex stiffness of silk and nylon tended to be high in textiles processed with persimmon juice treatment, as compared to the control textile. Peak load and elongation at peak load of untreated samples clearly decreased in both silk and nylon fabrics with the increase of ultraviolet irradiation time, while those of persimmon juice treated samples increased. Furthermore, ultraviolet blocking ratio measurement indicated that the fabric specimens treated with persimmon juice blocked U.V. spectrum better than the control specimen.

Anti-Helicobacter pylori Compounds from Polygonum cuspidatum

  • Khalil, Atif Ali Khan;Park, Woo Sung;Kim, Hye Jin;Akter, Kazi Marjahan;Ahn, Mi-Jeong
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.220-224
    • /
    • 2016
  • Anti-Helicobacter pylori activity guided fractionation led to the isolation of five anthraquinones, two stilbenes and one naphthoquinone from the EtOAc fraction of Polygonum cuspidatum, using silica gel column chromatography, Sephadex-LH20, MPLC and recrystallization. The chemical structures were identified to be physcion (1), emodin (2), anthraglycoside B (3), trans-resveratrol (4), anthraglycoside A (5), polydatin (6), 2-methoxy-6-acetyl-7-methyljuglone (7) and citreorosein (8) by UV, $^1H$-NMR, $^{13}C$-NMR and mass spectrometry. Anti-Helicobacter pylori activity including MIC values of each compound was evaluated. All of the isolates exhibited anti-H. pylori activity of which MIC values were lower than that of a positive control, quercetin. Compounds 2 and 7 showed potent growth inhibitory activity. Especially, a naphthoquinone, compound 7 displayed most potent antibacterial activity with $MIC_{50}$ value of $0.30{\mu}M$ and $MIC_{90}$ value of $0.39{\mu}M$. Although anti-H. pylori activity of this plant was previously reported, this is the first report on that of compounds isolated from this species. From these findings, P. cuspidatum roots or its isolates may be useful for H. pylori infection and further study is needed to elucidate mechanism of action.

유연성 기판위에 전기화학증착법으로 성장된 ZnO 나노로드의 광학적 특성연구

  • Kim, Myeong-Seop;Go, Yeong-Hwan;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.439-439
    • /
    • 2012
  • ZnO 나노로드는 큰 밴드갭 에너지(~3.37 eV)와 60 meV의 높은 엑시톤 결합 에너지(exciton binding energy)를 갖고 있으며, 우수한 전기적, 광학적 특성을 지닌 1차원 나노구조의 금속산화물로서 태양전지 및 광전소자 널리 응용되고 있다. 이러한 ZnO 나노로드를 성장하는 방법 중에 전기화학증착법(electrochemical deposition method)은 전도성 물질위에 증착된 시드층(seed layer)을 성장용액에 담그어 전압을 인가하여 만들기 때문에 기존의 수열합성법(hydrothermal method), 졸-겔 법(sol-gel method)보다 비교적 간단한 공정과정으로 저온에서 빠르게 물질을 성장시킬 수 있는 장점이 있다. 한편, 디스플레이 산업에서 ITO (indium tin oxide)는 투명 전도성 산화물(transparent conductive oxide)로써 가시광 파장영역에서 높은 투과율과 전도성을 가지며, 액정디스플레이, LED (Light emitting diode), 태양전지 등의 다양한 소자에 투명전극 재료로 쓰이고 있다. 또한 최근 ITO를 유연한 PET (polyethylene terephthalate) 기판 위에 증착은 얇고, 가볍고, 휘어지기 쉬워 휴대하기 편하기 때문에 차세대 광전자소자 응용에 가능성이 크다. 본 연구에서는 ZnO 나노로드를 ITO/PET 기판위에 전기화학증착법으로 성장하여, 구조적 및 광학적 특성을 분석하였다. 시드층을 형성하기 위해 RF 마그네트론 스퍼터를 이용하여 ~20 nm 두께의 ZnO 박막을 증착시킨 후, zinc nitrate와 hexamethylenetetramine이 포함된 수용액에 시료를 담그어 전압을 인가하였다. 용액의 농도와 인가전압을 조절하여 여러 가지 성장조건에 대한 ZnO 나노로드의 구조적, 광학적 특성을 비교하였다. 성장된 시료의 형태와 결정성을 조사하기 위해, field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD)을 사용하였으며, UV-vis-NIS spectrophotometer, photoluminescence (PL) 측정장비를 사용하여 광학적 특성을 분석하였다.

  • PDF

Isolation, Production, and Characterization of Protease from Bacillus subtilis IB No. 11

  • Lee, Min-Hyang;Lee, Kang-Moon;Choi, Yong-Jin;Baek, Yeon-Soo
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A potent protein degrading bacterium was isolated from soil samples of different environments. Polyphasic taxonomic studies and phylogenetic 16S rRNA sequence analyses led to identify the isolate IB No. 11 as a strain of Bacillus subtilis. The isolated strain was recognized to produce protease constitutively, and the maximum production (1.64 units/ml) was attained in a shake flask culture when the isolate was grown at $40^{\circ}C$, for 32 h in basal medium supplemented with starch (0.25%) and gelatin (1.25%) as sole carbon and nitrogen source, respectively. The optimum pH and temperature for the protease activity were determined to be pH 7.0 and $50^{\circ}C$, respectively. $Ca^{2+}$ and $Mn^{2+}$ enhanced remarkably the protease activity but neither showed positive effect on the protease's thermal stability. In addition, it was observed that the protease was fairly stable in the pH range of 6.5-8.0 and at temperatures below $50^{\circ}C$, and it could be a good candidate for an animal feed additive. The inhibition profile of the protease by various inhibitors indicated that the enzyme is a member of serine-proteases. A combination of UV irradiation and NTG mutagenesis allowed to develop a protease hyper-producing mutant strain coded as IB No. 11-4. This mutant strain produced approximately 3.23-fold higher protease activity (6.74 units/mg) than the parent strain IB No. 11 when grown at $40^{\circ}C$ for 32h in the production medium. The protease production profile of the selected mutants was also confirmed by the zymography analysis.

Sterilization of Scoria Powder by Corona Discharge Plasma (코로나 방전 플라즈마를 이용한 화산암재 분말 살균)

  • Jo, Jin Oh;Lee, Ho Won;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.386-391
    • /
    • 2014
  • Atmospheric-pressure nonthermal corona discharge plasma was applied to the sterilization of biologically contaminated scoria powder. Escherichia coli (E. coli) culture solution was uniformly sprayed throughout the scoria powder for artificial inoculation, which was well mixed to ensure uniformity of the batch. The effect of the key parameters such as discharge power, treatment time, type of gas and electrode distance on the sterilization efficiency was examined and discussed. The experimental results revealed that the plasma treatment was very effective for the sterilization of scoria powder; 5-min treatment at 15 W could sterilize more than 99.9% of E. coli inoculated into the scoria powder. Increasing the discharge power, treatment time or applied voltage led to an improvement in the sterilization efficiency. The effect of type of gas on the sterilization efficiency was in order of oxygen, synthetic air (20% oxygen) and nitrogen from high to low. The inactivation of E. coli under the influence of corona discharge plasma can be explained by cell membrane erosion or etching resulting from UV and reactive oxidizing species (oxygen radical, OH radical, ozone, etc.), and the destruction of E. coli cell membrane by the physical action of numerous corona streamers.

Synthesis of Iodine Substituted Polycarbosilane by High Temperature and Pressure Reaction Process and Properties Characterization (고온, 고압에서의 요오드 치환 Polycarbosilane의 합성 및 특성)

  • Byen, Ji Cheol;Sharbidre, Rakesh Sadanand;Kim, Yoon Ho;Park, Seung Min;Ko, Myeong Seok;Min, Hyo Jin;Lee, Na young;Ryu, Jae-Kyung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.489-494
    • /
    • 2020
  • SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • Journal of the Speleological Society of Korea
    • /
    • no.76
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.