• Title/Summary/Keyword: UV-CURABLE

Search Result 275, Processing Time 0.027 seconds

Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology (쾌속조형과 스크린 인쇄기술을 이용한 빌드업인쇄회로기판의 제조공정기술개발)

  • 조병희;정해도;정해원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.130-136
    • /
    • 2000
  • Generally, the build-up printed circuit board manufactured by the sequential process with etching, plating, drilling etc. requires many types of equipments and lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing prototype in the developing stage. In this study, we introduce a screen printing technology to prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as the formation of liquid resin thin layer, the solidification by UV/IR light, and via filling with conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with to the conventional process.

  • PDF

Preparation and Characterization of Polyurethane/Organoclay Nanocomposites by UV Curing (UV경화에 의한 폴리우레탄/유기화클레이 나노복합재료 제조와 물성 연구)

  • Shin, Geumsig;Chang, Young-Wook;Kim, Seong Woo
    • Journal of Adhesion and Interface
    • /
    • v.13 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • Polyurethane (PU)/organoclay nanocomposites were prepared by mixing UV curable urethane acrylate oligomer with organoclay, and a subsequent curing by UV irradiation. As organoclays, commercially available Cloisite 20A (C20A) and acrylsilane modified C20A were used. XRD and TEM analyses revealed that the UV cured PU/clay nanocomposites formed intercalated nanocomposites, and acrylsilane modified C20A are dispersed more finely than unmodified C20A in PU matrix. DMTA, pencil hardness and adhesion test onto PET substrate showed that the clay nanolayers induced an increase in the properties, and the enhancement in the properties was more pronounced in the PU/acrylsilane modified C20A nanocomposites than in the PU/unmodified C20A nanocomposites. It was also observed that the PU/surface modified clay nanocomposites showed remarkably lower shrinkage upon UV curing than the unfilled PU. The nanocomposites showed excellent optical transparency but lower gloss as compared to unfilled PU.

Comparision of the Properties of UV-cured Polyurethane Acrylates Containing Different Diisocyanates and Low Molecular Weight Diols

  • Yoo, Hye-Jin;Lee, Young-Hee;Kwon, Ji-Yun;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.2 no.3
    • /
    • pp.122-128
    • /
    • 2001
  • UV-curable polyurethane acrylate prepolymers were prepared from diisocyanates [isophorone diisocyanate (IPDI), 2,4-toluene diisocyanate (TDI), or 4,4'-dicyclohexylmethane diisocyanate (H$_{12}$MDI)], diols [ethylene glycol (EG), 1,4-butane diol (BD), or 1,6-hexane diol (HD)], polypropylene glycol as a polyol. UY-curable mixtures were formulated from the prepolymer (90 wt%), reactive diluent monomer trimethylol propane triacrylate (10 wt%). and photoinitiator 1-hydroxycy-clohexyl ketone (3 wt% based on prepolymer/diluent). The effects of different diisocyanates/low molecular weigh dial on the dynamic mechanical thermal properties and elastic recovery of UV-cured polyurethane acrylate films were examined. The tensile storage modulus increased a little in the order of EG > BD > HD at the same diisocyanate. Two loss modulus peaks for all samples are observed owing to the glads transition of softs segments ($T_gh$) and the glass transition temperature of hard segments ($T_gh$). For the same diisocyanate, $T_gh$, decreased, however, $T_gh$ increased, in the order of HD > BD > EG. The elastic recovery also increased in the order of HD > BD > EG at the same diisocyanate. In case of same diols, $T_gh$ increased in the order of $H_12$MDl > TDI > IPDI significantly. The ultimate elongation and elastic recovery increased in the order of TDI > IPDI > $H_12$MDl at the same diol.l.

  • PDF

Preparation and Thermal Insulation Property of UV Curable Hybrid Coating Materials Based on Silica Aerogel (실리카 에어로겔을 이용한 자외선 경화형 복합 코팅 물질의 제조 및 단열 특성)

  • Kim, Nam-Yi;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In this study, the composite coating materials with improved thermal insulation property were prepared by incorporating the hydrophobic silica aerogel. The surface modification of silica aerogel was performed to obtain UV curable urethane acrylate hybrid coating sols with good compatibility by using surfactant(Brij 56). The polycarbonate substrates were coated by the prepared composites and cured under UV radiation. The incorporation of aerogel with only 10 vol% of content resulted in remarkable improvement by about 28% in the thermal insulation property of the coated film, as compared with substrate. In addition, increasing aerogel content was found to give minor effect on the variation of optical transparency, adhesion, and surface hardness of the coated film.

Fabrication of polymer tip on an optical fiber end-face by guided UV light (도파된 UV 빛에 의한 광섬유 단면의 폴리머 팁 제작)

  • Park, Min-Gyu;Jeong, Ho-Jung;O, Gyeong-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.147-148
    • /
    • 2009
  • We have fabricated a down tapered polymer tip on optical fiber end-face by a guided UV light. One side of fiber was aligned with a mercury-xenon lamp and another was put into UV curable polymer. A shape of tip was controlled by adjusting an irradiance of lamp and time of exposure. A bending effect also affects the result. Optical characteristic was achieved preliminarily with solution of minute particles.

  • PDF

Solventless UV Curable Material for Low Cost System (저에너지 UV 경화형 무용제 소재 개발)

  • KIM, KWANGIN;LEE, JUHEON;LEE, HYUNJU;HAN, HAKSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • In this study, Poly-urethane acrylate (PUA) was synthesized by the reaction between Polycaprolactonetriol (PCLT) and Isophorone dissocyanate (IPDI) and hybridized with inorganic materials. Tetraethylortho silicate (TEOS) and nano clay (Closite 20A) were used as inorganic particles. For the hybridization of TEOS with PUA, sol-gel method is used, in which TEOS is made into spherical particle in the firsthand. In the case of Nano clay, hybridization is carried out through the dispersion as Nano clay has a layered structure. The solution of PUA hybrid was made into a film after UV curing and its thermo and electrical properties were measured. The experimental analysis and result demonstrate that the PUA hybrid shows an improved thermal properties and lower dielectric constant than that of the non-hybrid PUA. The trend of improved properties was different depending on structure of inorganic materials.

Preparation of UV Cured Hard Coating Films Using Polysilazane on Plastic Substrates (플라스틱 기재 위에 polysilazane을 이용한 UV 경화형 하드코팅 도막 제조)

  • Yang, Jun Ho;Cho, Yong Ju;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.162-168
    • /
    • 2018
  • UV-curable hard coating solutions were prepared by mixing organic or inorganic polysilazane with urethane acrylate. UV-cured hard coating films were also obtained by flow coating, subsequently UV-curing on polymethylmethacrylate (PMMA) sheets. The effect of types and amounts of polysilazane was investigated on properties of obtained coating films. As a result, the coatings obtained by using organic polysilazane showed a high hydrophobic property with water contact angle of $95^{\circ}$, pencil hardness of 7H and high transparency of 92% in the visible wavelength range. On the other hand, the PMMA sheets made by using inorganic polysilazane exhibited a pencil hardness of as high as 8H, good adhesion to the substrate and water contact angle of $82^{\circ}$.