• 제목/요약/키워드: UV scanning

검색결과 649건 처리시간 0.025초

Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties

  • Li, Shifeng;Shen, Yanming;Liu, Dongbin;Fan, Lihui;Wu, Keke
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.392-396
    • /
    • 2014
  • New organic-inorganic composite of 2,4-dihydroxybenzophenone (BP-1) encapsulation into dodecylbenzenesulfonate (DBS) modified layered double hydroxide (LDH) was successfully prepared. The surface, structural, thermal and absorption properties of the BP-1/DBS-LDH nanohybrid was characterized by BET analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG) and diffuse reflectance UV-Vis absorbance spectra (DRUV-vis). The interlayer configuration of composite and the adsorption mechanism of BP-1 on MgAl-DBS-LDH were discussed. It was suspected that DBS anions located in the form of monolayer arrangement with a $75^{\circ}$ anti parallel angle between dodecylbenzenesulfonate chain axis. The diffuse reflectance UV-Vis absorbance results revealed that the UV absorbing wavelength of BP-1/DBS-LDH evidently extends to about 400 nm, which shows that the BP-1/DBS-LDH has the potential application as a UV absorber.

상온에서 UV 활성화된 ZnS 나노와이어의 NO2 가스 검출 특성 (NO2 gas sensing properties of UV activated ZnS nanowires at room temperature)

  • 강우승
    • 한국표면공학회지
    • /
    • 제47권6호
    • /
    • pp.297-302
    • /
    • 2014
  • ZnS nanowires were synthesized in order to investigate $NO_2$ gas sensing properties. They were grown on the sapphire substrate using ZnS powders. SEM (scanning electron microscopy) showed the diameter and length of the ZnS nanowires were approximately in the range of 50 - 100 nm and a few $10s\;{\mu}m$, respectively. They were also found to be composed of Wurtzite- structured single crystals from TEM (transmission electron microscopy) analysis. $NO_2$ gas sensing performance of the ZnS nanowire was measured with electrical resistance changes caused by $NO_2$ gas with a concentration of 1-5ppm. The sensor was UV treated with an intensity of $1.2mW/cm^2$ to facilitate charge carrier transfer. The responses of the ZnS nanowires to the $NO_2$ gas at room temperature, treated with UV of two different wavelengths of 365 nm and 254 nm, are measured to be 124.53 - 206.87 % and 233.97 - 554.83%, respectively. In the current work, the effect of UV treatment on the gas sensing performance of the ZnS nanowires was studied. And the underlying mechanism for the electrical resistance changes of the ZnS nanowires by $NO_2$ gas was also discussed.

가감서시옥용산의 미백효과에 관한 연구 (Depigmentation activity of Kakamseosiokyong-san)

  • 손동석;김윤범
    • 한방안이비인후피부과학회지
    • /
    • 제15권2호
    • /
    • pp.104-117
    • /
    • 2002
  • Objective : The aim of this study was to investigate the skin-whitening effect of Kakamseosiokyong-san Method : We investigated that the extracts of Kakamseosiokyong-san inhibit activity of tyrosinase, the enzyme which converts 3-(3,4-dihydroxyphenyl)alanine to dopachrom in the biosynthetic process of melanin. the UV absorbance of the extracts in the UV - A region and UV - B region was measured by UV scanning. the effect of extracts on cell viability and melanin production in cultured B16 mouse melanoma cells was measured, and cytoprotective effects of extracts on PC12 cells injured by hydrogen peroxide was measured by MTT assay Results: The extracts of Kakamseosiokyong-san inhibited activity of tyrosinase. The extracts not only showed inhibitory effects on melanin production in cultured B16 mouse melanoma cells, but also exhibited cytoprotective effects on PC12 cells injured by hydrogen peroxide, but did not showed an absorbance in the UV - A region and UV - B region. Conclusion: These results suggest that Kakamseosiokyong-san inhibit melanin biosynthesis which is involved in hyperpigmentation and could be used as a whitening agent for the skin.

  • PDF

자외선 보호성분이 포함된 헤어오일의 자외선에 대한 모발 보호성능 연구 (UV Protection Effect of Hair Treated with Hair Oils Containing UV Protective Substances)

  • 김수환;박선화;안춘순
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1205-1223
    • /
    • 2020
  • This research investigated the protective effect on hair for 3 commercial hair oil products containing UV filters upon UVA and UVB irradiation. Hair tresses each weighing 2 g were prepared from black virgin hair. Hair tresses treated with 0.5 g of hair oil were irradiated by UVA (365 nm) and UVB (302 nm) lamp for up to 600 hours. Color of hair was measured using a spectrocolorimeter, tensile strength and elongation of hair were measured using a biological tensile tester, surface morphology was examined using a scanning electron microscope. Experimental results were analyzed using SPSS statistical software. Hair color and tensile strength were both affected by UVA and UVB irradiation. Significant differences in the color and tensile strength were observed between untreated hair and hair treated with hair oils. Good UV protective effect observed in Oil 2 and Oil 3 was attributable to the type and the combination of UV filters contained in the products.

Nb2O5-Graphene나노복합체의 제조 및 유기염료 광촉매 분해반응의 응용성에 관한 연구 (Preparation of Nb2O5-Graphene Nanocomposites and Their Application in Photocatalytic Degradation of Organic Dyes)

  • 박해수;고원배
    • Elastomers and Composites
    • /
    • 제49권4호
    • /
    • pp.330-335
    • /
    • 2014
  • Niobium pentoxide ($Nb_2O_5$) 나노입자는 niobium (V) chloride 와 pluronic F108NF를 전구체와 주형제로 사용하여 합성하였다. $Nb_2O_5$-graphene나노복합체는 아르곤 가스 분위기 전기로 조건에서 2시간 동안 $700^{\circ}C$로 가열하였다. 시료의 결정화도, 결정형태, 광촉매 분해 반응성은 X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy를 사용하여 측정하였다. $Nb_2O_5$-graphene나노복합체는 254 nm의 자외선 조건에서 유기염료 광촉매 분해 반응의 광촉매로 사용되었다. 유기염료는 methylene blue (MB), methyl orange (MO), rhodamine B (RhB), brilliant green (BG)이 사용되었다. 또한 $Nb_2O_5$-graphene나노복합체를 사용하여 유기염료 광촉매 분해 반응의 반응 속도를 결정하였다.

나노 입자의 플라즈모닉 현상 증폭을 위한 나노구조 표면과 제작방법에 관한 연구 (A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles)

  • 이재원;정명영
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.55-59
    • /
    • 2022
  • 본 논문에서는 플라즈몬 공명 현상을 통하여 나노 입자 주변의 전기장을 증폭시키며, 흡광률을 높일 수 있는 구조를 시간영역 유한차분(FDTD)시뮬레이션을 이용하여 나노입자를 평면에 배열하였을 때와 비교하여 나노 구조에 배열하였을 때의 전기장과 흡광도를 비교하였다. 또한 나노구조의 폭을 240 nm ~ 300 nm로 조절하여 입자간의 간격이 좁을수록 광 흡수율이 높음을 보이고자 하였다. 또한 UV 임프린트를 통하여 나노 입자와 나노 구조를 표면에 함께 형성시키는 방법에 대한 연구를 진행하였다. 해당 구조에 입자를 형성하기 위하여 스프레이 코팅을 이용하여 나노 입자를 구조 제작에 사용되는 몰드에 먼저 배열한 후, UV 임프린팅을 통해 제작하였고 나노구조와 입자가 함께 형성됨을 Scanning Electron Microscopy 로 확인하였다.

마이크로파 반사계수 측정을 통한 Copper(II)-phthalocyanine 박말의 결정 성장 시간에 따른 전기전도도 특성 변화 연구 (Conductivity changes of copper(II)-phthalocyanie thin films due to annealing time of grain growing measuring microwave reflection coefficients)

  • 박미화;유현준;임은주;나승욱;이기진;차덕준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1074-1078
    • /
    • 2004
  • 열 중착 방법을 이용하여 copper(II)-phthalocyanine(CuPc) 박막을 glass 기판 위에 제작하였다. 박막은 열처리를 하지 않은 경우와 열처리 조건을 $150^{\circ}C$ 로 후열(annealing) 처리 하는 방식으로 하였으며 후열 처리한 경우 $150^{\circ}C$에서의 열처리 지속 시간을 각각 2시간, 3시간, 4시간으로 달리하였다. 제작된 박막의 전기전도도를 평가하기 위해 마이크로파의 근접장 효과를 이용한 근접장 현미경(near-field scanning microwave microscope)을 이용하여 비파괴적인 방식으로 CuPc 박막의 반사계수(reflection coefficient)를 측정하였다. CuPc 박막의 전기전도도 특성을 UV 흡수도를 통한 HOMO(highest occupied molecular orbital), LUMO(lowest unoccupied molecular orbital) 준위의 밴드갭의 shift 현상과 관련지어 설명하였다. 박막 표면 특성은 SEM(scanning microscope microscopy)을 통해 관측하였다. 열처리 지속 시간에 따른 CuPc 박막의 전기전도도 특성은 2시간으로 지속한 경우의 박막의 경우 가장 좋았으며 그 보다 더 오랜 시간 동안 열처리를 지속한 경우에는 전기 전도 특성이 오히려 나빠짐을 알 수 있었다.

  • PDF

천연염색 직물의 자외선 차단 성능 증진 연구 - 홍화 황색소 염색 셀룰로오스 직물을 중심으로 - (Improving UV-cut Ability of Natural Dyed Fabrics - Focused on Cellulose Fabrics Dyed with Safflower Yellow Colorants -)

  • 신윤숙;최승연
    • 대한가정학회지
    • /
    • 제45권10호
    • /
    • pp.73-81
    • /
    • 2007
  • The purpose of this study was to increase the ultraviolet-light (UV)-cut ability of cellulose fabrics (cotton, ramie, and rayon) dyed with safflower yellow colorants. For this purpose, samples treated with UV-cut agent and tannic-acid were compared with the untreated samples after UV exposure in terms of K/S value, color changes(${\Delta}E$), SEM, and strength retention. The K/S value rapidly decreased after 28 days exposure, whereas the K/S value of the samples treated with both UV-cut agent and tannic-acid decreased to less than that of the untreated samples. In color changes, $L^*$ increased while $a^*$ and $b^*$ decreased, indicating less red and yellow character in color. This induced a change in the hue, value and chroma values. However the color change(${\Delta}E$) of the samples treated with both UV-cut agent and tannic-acid was less than that of the untreated samples. Scanning electron microscopy (SEM) pictures showed a severe degradation by exposure in all samples. Tensile strength rapidly decreased after 28 days for cotton and rayon, and after 21 days for ramie. However, the strength retention of the samples treated with UV-cut agent and tannic-acid was higher than that of the untreated samples.

ZnO:Er막의 UV 발광에 미치는 열처리 효과 (Annealing effects of ZnO:Er films on UV emission)

  • 최무희;마대영
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.316-321
    • /
    • 2009
  • Er-doped ZnO(ZnO:Er) films were deposited onto MgO wafers by ultrasonic spray pyrolysis at 550 $^{\circ}C$ varying the concentration of Er in the deposition source from 0.5 wt% to 3.0 wt%. Annealing of the films in a vacuum was carried out to increase the intensity of ultraviolet(UV) emission from the films. The annealing temperature was between 600$^{\circ}C$ and 800$^{\circ}C$. The crystallographic properties and surface morphology of the films were investigated by X-ray diffraction(XRD)and scanning electron microscope(SEM), respectively. The properties of photoluminescence(PL) for the films were investigated by the dependence of PL spectra on the annealing temperature. X-ray photoelectron spectroscopy(XPS) was conducted to find the composition change in the films by the annealing.

SURFICIAL DISINFECTION OF ESCHERIACHIA COLI-CONTAMINATED PLAYGROUND SOIL BY UV IRRADIATION

  • Kim, Jae-Eun;Kim, Tong-Soo;Cho, Shin-Hyeong;Cho, Min;Yoon, Je-Yong;Shea, Patrick J.;Oh, Byung-Taek
    • Environmental Engineering Research
    • /
    • 제12권2호
    • /
    • pp.64-71
    • /
    • 2007
  • The necessity of disinfecting playground soil is an important issue, because pathogenic protozoa, bacteria, and parasite eggs remain viable for several months and can infect children. UV irradiation has been used to decontaminate water but its effectiveness on soil is unclear. We determined the efficacy of UV radiation for inactivation of an indicator bacteria, E. coli (strain ATCC 8739), on playground soil. While 99% inactivation of E. coli in the soil was readily achieved by UV radiation within 55 min at $0.4\;mW\;cm^{-2}$, complete inactivation was not achieved, even after prolonged treatment at $4\;mW\;cm^{-2}$. This was attributed to the irregular surface of the soil. A small number of E. coli escaped the UV radiation because they were situated in indentations or under small particles on the soil surface. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) confirmed that the surface characteristics of the soil is the major limiting factor in the inactivation of E. coli by UV radiation. Thus UV treatment may not be adequate for disinfecting some soils and should be carefully evaluated before being used on playground soils.