• Title/Summary/Keyword: UV photolysis

Search Result 80, Processing Time 0.031 seconds

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.

Photolysis Improvement of Toluene in 50%TiO2/6%WO3 Sol Solutions Sensitized by Acetone (50%TiO2/6%WO3 졸 용액에서의 톨루엔 처리에 대한 아세톤의 광활성 증가효과)

  • Shin, Hye-Seung;Kim, Jae-Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.261-268
    • /
    • 2012
  • Objectives: The photocatalytic degradation of toluene in a batch mode photoreactor for the purpose of the hazardous waste treatment was investigated. Methods: Kinetic experiments using a low pressure mercury lamp (Lambda Scientific Pty Ltd, 50 Watt) emitting both UV and visible light were performed at $31^{\circ}C$ over toluene concentrations ranging from 10 to 50 mg/l in water with $50%TiO_2/6%WO_3$ (TW) concentration of 1 g/l at a pH of 6. Results: Kinetic studies showed that $50%TiO_2/6%WO_3$ (TW) photocatalyst was highly active in toluene degradation; we observed that 99% of the pollutant was degraded after six hours under visible irradiation; furthermore, we observed that adsorption onto TW catalyst was responsible for the decrease of toluene with pseudo-first order kinetics. It was also found that oxygen as a radical source in the sol medium played a significant role in affecting the photodegradation of toluene, especially with a two-fold elevation. This increase was achieved by a more than four-fold elevation of the photodegradation of toluene in the presence of acetone than without, presumably via an energy transfer mechanism. Conclusions: We concluded that photodegradation in acetone and oxygen molecules along with TW was an effective method for the removal of toluene from wastewater.

Factors Affecting the Photooxidative Stability of Soymilk (두유의 광산화 안정성에 영향을 주는 요인)

  • 이상화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.3
    • /
    • pp.441-452
    • /
    • 1996
  • The effects of chlorophyll, tocopherols($\alpha$-tocopherol, ${\gamma}$-tocopherol and $\delta$-tocopherol), carotenoids ($\beta$-carotene and lutein), light sources, light intensities and strage temperatures on the photooxidative stability of soymilk were studied by measuring TBA value and depleted headspace oxygen(DHO) of soymilk. The samples were stored in the light storage box for 6 days and evaluated for the photooxidative stabilities. As the concentrations of chlorophyll increased, TBA value and DHO of the sample increased significantly(p<0.05), indicating chlorophyll acting as a photosensitizer. However, as the concentrations of tocopherols ($\alpha$-tocopherol, ${\gamma}$-tocopherol and $\delta$-tocopherol) and carotenoids ($\beta$-carotene and lutein) increased, TBA values and DHO of the samples decreased significantly(p<0.05). The light screening effects of carotenoids on DHO in the samples were not significantly different from the control at p>0.05. Therefore, there was no light screening effects of carotenoids on the oxidative stability of soymilk. The results indicate that tocopherols and carotenoids reduce the photooxidative stability of soymilk. $\delta$-Tocopherol was the most effective in photosensitized oxidation followed by ${\gamma}$-and $\alpha$-tocopherols in the order of increasing stability. $\beta$-Carotene was significantly(p<0.05) more effective than lutein in minimizing the chlorophyll-sensitized photooxidation of soymilk. Visible light was more effective than UV light in decreasing the photooxidative stability of soymilk. Therefore, photooxidation of soymilk containing chlorophyll is mainly due to photosensitized oxidation rather than photolysis reaction. As the intensities of fluorescence light increased, TBA values and DHO of the samples increased significantly at P<0.05. However, as the storage temperatures increased, TBA values and DHO of soymilk did not change significantly at p>0.05.

  • PDF

Photocatalytic Dehydrogenation of Potassium Formate Over Pd/TiO2 (Pd/TiO2 촉매를 이용한 HCO2K 광 분해 반응)

  • JEON, MINA;CHOI, SU BIN;DOH, HYUNMI;PARK, HYUN S.;YOON, CHANG WON;NAM, SUK WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.447-452
    • /
    • 2017
  • A $Pd/TiO_2$ catalyst was prepared by a conventional impregnation method, and further characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy. The as-prepared material was employed to accelerate dehydrogenation of potassium formate in the presence of light at different temperatures. The $Pd/TiO_2$ catalyst showed distinct dehydrogenation activities, and particularly, the material exhibited a higher turnover frequency (TOF) of $2,097h^{-1}$ at $80^{\circ}C$ after 10 minutes in the presence of light compared to that (TOF of $1,477h^{-1}$) obtained in the absence of light. Numerous analytical techniques suggest that the increased dehydrogenation activity likely originates from light-excited electron and hole at the photocatalyst, i.e., $TiO_2$, in conjunction with metal-support interaction.

ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes (전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구)

  • Yi, Hwanpyo;Jung, Hyuck;Kim, Okkil;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.655-660
    • /
    • 2013
  • Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

Assessment and Applications of Multi-Degradable Polyethylene Films as Packaging Materials

  • Chung, Myong-Soo;Lee, Wang-Hyun;You, Young-Sun;Kim, Hye-Young;Park, Ki-Moon;Lee, Sun-Young
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.5-12
    • /
    • 2006
  • Degradation performance of environmentally friendly plastics that can be disintegrated by combination of sunlight, microbes in soil, and heat produced in landfills was evaluated for use in industries. Two multi-degradable master batches (MCC-101 and MCC-102 were manufactured, separately mixed with polyethylene using film molding machine to produce 0.025 mm thick films, and exposed to sunlight, microbes, and heat. Low- and high-density polyethylene (LDPE and HDPE) films containing MCC-101 and MCC-102 became unfunctional by increasing severe cleavage at the surface and showed high reduction in elongation after 40 days of exposure to ultraviolet light. LDPE and HDPE films showed significant physical degradation after 100 and 120 days, respectively, of incubation at $68{\pm}2^{\circ}C$. SEM images of films cultured in mixed mold spore suspension at $30^{\circ}C$ and 85% humidity for 30 days revealed accelerated biodegradation on film surfaces by the action of microbes. LDPE films containing MCC-l01 showed absorption of carbonyls, photo-sensitive sites, at $1710\;cm${-1}$ when exposed to light for 40 days, whereas those not exposed to ultraviolet light showed no absorption at the same frequency. MCC-101-based LDPE films showed much lower $M_w$ distribution after exposure to UV than its counterpart, due to agents accelerating photo-degradation contained in MCC-101.

Cancer Chemopreventive Properties of Processed Ginseng

  • Surh, Young-Joon
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.270-280
    • /
    • 1998
  • Ginseng is one of the most widely used medicinal plants, particularly in East Asian countries. Certain fractions or purified ingredients of ginseng have been shown to exert inhibitory effects on growth of cancer cells in culture or on tumorigenesis in experimental animals. Moreover, a recent epidemiologic study reveals that ginseng intake is associated with a reduced risk for environmentally related cancers such as esophageal, gastric, colorectal, and pulmonary tumors. Heat treatment of Panax ginseng C. A. Meyer at the temperature higher than that applied to the conventional preparation of red ginseng yielded a mixture of saponins with potent antioxidative properties. Thus, the methanol extract of heat-processed ginseng (designated as'NGMe') attenuated lipid peroxidation in rat brain homogenates induced by ferric ion or ferric ion plus ascorbic acid. Furthermore, the extract protected against strand scission in f Xl 74 supercoiled DNA Induced by UV photolysis of H2O2 and was also capable of scavenging superoxide generated in vitro by xanthine/xanthine oxidate or in differentiated human promyelocytic leukemia (HL-60) cells by the tumor promoter,12-0-tetvade- canoylphorbol-13-acetate (TPA). Since tumor promotion is closely linked to oxidative stress, we have determined possible anti-tumor promotional effects of NGMe on two-stage mouse skin tumorigenesis. Topical application of NGMe onto shaven backs of female ICR mice 10 min prior to TPA significantly ameliorated skin papillomagenesi s initiated by 7,12-dimethylbenz (a) anthracene (DMBA).'Likewise, TPA-induced epidermal ornithine decarboxylase activity and elevation of tumor necrosis factor-a were suppressed signifies%fly by NGMe pretreatment. NGMe topically applied onto surface of hamster buccal pouch 10 min before each topical application of DMBA inhibited oral carcinogenesis by 76olo in terms of multiplicity. Taken together, these results suggest that processed Panax ginseng C. A. Meyer has potential cancer chemopreventive activities.

  • PDF

An Advanced Kinetic Method for HO2·/O2-· Determination by Using Terephthalate in the Aqueous Solution

  • Kwon, Bum Gun;Kim, Jong-Oh;Kwon, Joong-Keun
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.205-210
    • /
    • 2012
  • Hydroperoxyl radical/superoxide anion radical ($HO_2{\cdot}/O_2^-{\cdot}$, $pK_a$=4.8) as an intermediate is of considerable importance in oxidation processes. Hence, the method of detecting $HO_2{\cdot}/O_2^-{\cdot}$ with high sensitivity is necessary to be developed. To achieve this objective, this study newly employed terephthalate (TA) as a probe for the measurement of $HO_2{\cdot}/O_2^-{\cdot}$ in the kinetic method presented in our previous study. This method was based on the hydroxylation of TA to produce mainly hydroxyterephthalic acid or hydroxyterephthalate (OHTA), which was analyzed by fluorescence detection (${\lambda}_{ex}$=315nm, ${\lambda}_{ex}$=425nm). The life-time of $HO_2{\cdot}/O_2^-{\cdot}$ and its concentration formed from the photolysis technique of $H_2O_2$ were reported in this study. At range of pH 2-10, the life-time of $HO_2{\cdot}/O_2^-{\cdot}$ was 51-422 sec. In particular, an increase in the life-time with pH was observed. The sensitivities of the kinetic method by using TA were always higher with 1.7-2.5 times at pH 8.0 than those by using benzoic acid. From these results, this study can contribute to understanding the basic functions of $HO_2{\cdot}/O_2^-{\cdot}$ in oxidation processes.

Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports (다양한 유기계 지지체와 광촉매 Nano-ZnO 복합체를 활용한 1,1,2-trichloroethylene 제거 효율 평가)

  • Jang, Dae Gyu;Ahn, Hosang;Kim, Jeong Yeon;Ahn, Chang Hyuk;Lee, Saeromi;Kim, Jong Kyu;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.771-780
    • /
    • 2014
  • In this study, the various organic supports (i.e., silicone, acrylonitrile-butadiene-styrene, epoxy, and, butadiene rubber) with great sorption capacity of organic contaminants were chosen to develop nano-ZnO/organic composites (NZOCs) and to prevent the detachment of nano-ZnO particles. The water resistance of the developed NZOCs were evaluated, and the feasibility of the developed NZOCs were investigated by evaluating the removal efficiency of 1,1,2-trichloroethylene (TCE) in the aqueous phase. Based on the results from water-resistance experiments, long-term water treatment usage of all NZOCs was found to be feasible. According to the FE-SEM, EDX, and imaging analysis, nano-ZnO/butadiene rubber composite (NZBC) with various sizes and types of porosity and crack was measured to be coated with relatively homogeneously-distributed nano-ZnO particles whereas nano-ZnO/silicone composite (NZSC), nano-ZnO/ABS composite (NZAC), and nano-ZnO/epoxy composite (NZEC) with poorly-developed porosity and crack were measured to be coated with relatively heterogeneously-distributed nano-ZnO particles. The sorption capacity of NZBC was close to 60% relative to the initial concentration, and this result was mainly attributed to the amorphous structure of NZBC, hence the hydrophobic partitioning of TCE to the amorphous structure of NZBC intensively occurred. The removal efficiency of TCE in aqueous phase using NZBC was close to 99% relative to the initial concentration, and the removal efficiency of TCE was improved as the amount of NZBC increased. These results stemmed from the synergistic mechanisms with great sorption capability of butadiene rubber and superior photocatalytic activities of nano-ZnO. Finally, the removal efficiency of TCE in aqueous phase using NZBC was well represented by linear model ($R^2{\geq}0.936$), and the $K_{app}$ values of NZBC were from 2.64 to 3.85 times greater than those of $K_{photolysis}$, indicating that butadiene rubber was found to be the suitable organic supporting materials with enhanced sorption capacity and without inhibition of photocatalytic activities of nano-ZnO.

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.