• Title/Summary/Keyword: UV oxidation

Search Result 488, Processing Time 0.025 seconds

Investigation of Oxidation Methods of Organic Radical Polymer for Cathode Material in Lithium Ion Batteries (리튬이차전지 양극재인 유기라디칼 고분자의 산화법에 대한 연구)

  • Lee, Ilbok;Kim, Younghoon;Moon, Ji-Yeon;Lee, Chul Wee;Kim, Daeun;Ha, Kyoung-Su;Lee, Dong Hyun;Son, Hyungbin;Yoon, Songhun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.827-831
    • /
    • 2014
  • An organic radical polymer (ORP) was prepared by radical polymerization and following oxidation into nitroxyl radical. Two different oxidation methods were employed and their radical concentrations were measured using electroparamagnetic resonance spectroscopy (EPR) and UV-visible absorption (UV-vis) spectroscopy. From these measurements, $H_2O_2-Na_2WO_4$ oxidation method exhibited a complete oxidation, which resulted in 97.6% spin concentration. Also, it was revealed that convenient and cheap UV-vis measurement was useful for preliminary radical concentration comparison. After applied as a cathode material in lithium ion batteries, ORP electrode showed a high initial capacity ($110mAh\;g^{-1}$), a good initial efficiency (96%), a very high rate performance (70% charging during 1.2 min) and stable cycle performance.

Effects of Advanced Oxidation of Penicillin on Biotoxicity, Biodegradability and Subsequent Biological Treatment (고도산화공정 처리가 페니실린의 생독성, 생분해도 및 생물학적 분해에 미치는 영향)

  • Luu, Huyen Trang;Minh, Dang Nhat;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.690-695
    • /
    • 2018
  • Advanced oxidation processes (AOPs) composed of O3 and UV were applied to degrade penicillin (PEN). The degradation efficiency was evaluated in terms of changes in the absorbance (ABS) and total organic carbon (TOC). The combination of $O_3/H_2O_2/UV$ and $O_3/UV$ showed the best performance for the reduction of ABS (100% for 9 min) and TOC (70% for 60 min) values, although the mineralization was uncompleted under the experimental condition in this study. The change in biotoxicy was monitored with Escherichia coli susceptibility and Vibrio fischeri biofluorescence. The E. coli susceptibility was eliminated completely for 9 min by $O_3/UV$, and the toxicity to V. fischeri biofluorescence was 57% reduced by $O_3/H_2O_2/UV$. For the ultimate treatment of PEN, it is suggested that an AOP using $O_3/UV$ is followed by biological treatment, utilizing the enhanced biodegradability by the AOP. During 30 min of $O_3/UV$ treatment, the $BOD_5/COD$ ratio as an indication of biodegradability showed about 4-fold increment, compared to that of using a non-treated sample. TOC removal rate for AOP-pretreated PEN wastewater increased 55% compared to that of using the non-pretreated one through an aerobic biological treatment by Pseudomonas putida for artificial wastewater containing 20 mg/L of PEN. In conclusion, $O_3/UV$ process is recommended as a pretreatment step prior to an aerobic biological process to improve the ultimate degradation of penicillin.

Destruction of Acetic Acid Using Various Combinations of Oxidants by an Advanced Oxidation Processes (다양한 산화반응을 조합한 고급산화공정의 아세트산 분해에 관한 연구)

  • Kwon, Tae Ouk;Park, Bo Bae;Moon, Jang Soo;Moon, Il Shik
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.314-319
    • /
    • 2007
  • The destruction of synthetic acetic acid wastewater was carried out using UV, $O_3$, $H_2O_2$, $Fe^{2+}$ oxidants in various combinations by the advanced oxidation processes. $UV/H_2O_2$, $UV/H_2O_2/Fe^{2+}$, $O_3$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes were tested. $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ processes shows the most effective destruction efficiency at low pH (3.5) condition of wastewater, but $UV/H_2O_2$ and $O_3$ processes were observed less than 20%. Destruction efficiency was gradually increased with the reaction time in the $O_3/H_2O_2$ and $UV/O_3/H_2O_2$ processes, in case of the $UV/H_2O_2/Fe^{2+}$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes shows rapid increasing of destruction efficiency within 90 min, then slightly decreasing with time. The destruction efficiencies of $UV/H_2O_2/Fe^{2+}$, $O_3/H_2O_2$, $UV/O_3/H_2O_2$ and $UV/O_3/H_2O_2/Fe^{2+}$ processes were observed 55, 66, 66 and 64%, respectively.

Improvement of Organic Substances Indicators by Linked Ultra Violet-Advanced Oxidation Process After Ozonation for Anaerobic Digested Wastewater (소화탈리액 대상 오존 전처리와 Ultra Violet-Advanced Oxidation Process 연계 처리를 통한 유기물질 지표 개선)

  • Jaiyeop Lee;Jesmin Akter;Ilho Kim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.253-259
    • /
    • 2023
  • Bioreactors are devices used by sewage treatment plants to process sewage and which produce active sludge, and sediments separated by solid-liquid are treated in anaerobic digestion tanks. In anaerobic digestion tanks, the volume of active sludge deposits is reduced and biogas is produced. After dehydrating the digestive sludge generated after anaerobic digestion, anaerobic digested wastewater, which features a high concentration of organic matters, is generated. In this study, the decomposition of organic carbon and nitrogen was studied by advanced oxidation process. Ozone-microbubble flotation process was used for oxidation pretreatment. During ozonation, the TOC decreased by 11.6%. After ozone treatment, the TOC decreased and the removal rate reached 80.4% as a result of the Ultra Violet-Advanced Oxidation Process (UV-AOP). The results with regard to organic substances before and after treatment differed depending on the organic carbon index, such as CODMn, CODCr, and TOC. Those indexes did not change significantly in ozone treatment, but decreased significantly after the UV-AOP process as the linkage treatment, and were removed by up to 39.1%, 15.2%, and 80.4%, respectively. It was confirmed that biodegradability was improved according to the ratio of CODMn to TOC. As for the nitrogen component, the ammonia nitrogen component showed a level of 3.2×102 mg/L or more, and the content was maintained at 80% even after treatment. Since most of the contaminants are removed from the treated water and its transparency is high, this water can be utilized as a resource that contains high concentrations of nitrogen.

Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(I) (전기분해와 UV 조사에 의한 수중의 Rhodamine B의 제거(I))

  • Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.439-445
    • /
    • 2008
  • The feasibility study for the application of the removal and mineralization of Rhodamine B (RhB) was performed in a batch electrochemical reactor. The electro/UV process was consisted of DSA (dimensionally stable anode) electrode and UV-C or ozone lamp. The experimental results showed that RhB removal by the ozone lamp was higher than that of the UV-C lamp. Optimum current of the electro/UV process was 1 A. The electrochemical, UV and electro/UV process could completely degrade RhB, while a prolonged treatment was necessary to reach a high level RhB mineralization. It was observed that RhB removal in electro/UV process is similar to the sum of the UV and electrolytic decolorization. However, it was found that the COD of RhB could be degraded more efficiently by the electro/UV process (90.2 %) than the sum of the two individual oxidation processes [UV (19.7%) and electrolytic process (50.8%)]. A synergetic effect was demonstrated between the UV and electrolysis.

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.

A Development and Validation of Cosmetic Container Based on L-Ascorbic Acid Oxidation Property (L-Ascorbic Acid의 산화특성에 따른 화장품 용기 개발 및 유효성 분석)

  • Yoon, Sungwook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2013
  • L-ascorbic acid, the representative antioxidants, has a great effect on skin whitening, collagen synthesis, and anti-aging, but has low oxidative stability during storage. Therefore, in this study, thermal and oxidation properties of L-ascorbic acid under various storage conditions (powder, aqueous phase, changes of temperature, UV-irradiation, and inflow of external air etc.) were investigated. And the storage stability of ingredient was validated in the double-spaced pouch by analysing oxidation properties under each storage conditions (powder phase and blended with essence). In oder to analyze the thermal properties, TGA, DSC, and FT-IR analysis were carried out and UV-visible spectrophotometer & redox titration were used in parallel for oxidation property analyses. From the result of experiment, L-ascorbic acid was oxidized fast when it contained lots of metallic ion, hydroxy ion in aqueous solution under high temperature, UV-irradiation & inflow external air, whereas it was not oxidized for a long time when it was stored as pure powder although it has same condition as heating up, UV-irradiation & inflow external air. Based on this result, retention period of cosmetics which is using L-ascorbic acid, less stable material in oxidation can be innovatively increased when using double-spaced pouch that is designed and produced for separating storage of active ingredients.

Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone (마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거)

  • Lee, Inkyu;Lee, Eunyoung;Lee, Hyejung;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.617-622
    • /
    • 2011
  • Ozone-based advanced oxidation was applied for the treatment of anaerobic digestion effluent of livestock wastewater. Initial COD and color value were 930 mg/L and 0.04, respectively, and the 1/10-diluted wastewater was used for the study. The treatment characteristics were compared between the conventionally generated ozone ($105{\mu}m$) and microbubbled ozone ($13{\mu}m$). The use of microbubbled ozone improved the removal of chemical oxygen demand (COD) and color by 85% and 26%, respectively, compared with the conventionally bubbled ozone. The application of microbubbled $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$ combinations resulted in 5~10% higher color removal than ozone alone, which implies that the contribution of UV or $H_2O_2$ is not significant in color removal. On the other hand, COD removal could be increased two folds compared with ozone alone through $O_3/UV/H_2O_2$ combination. The contribution of $H_2O_2$ was bigger than UV for COD removal with microbubbled ozone. Due to the enhancement of dissolved ozone and radical activity, the microbubbling enabled us to additional COD removal even after stopping ozone supply in the presence of UV or $H_2O_2$.

Color and COD Removal of Rhodamine B Using Ozone, Photocatalyst and Ozone-Complex Process (오존, 광촉매 및 오존-복합 공정을 이용한 Rhodamine B의 색도와 COD 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.662-669
    • /
    • 2007
  • The effect of advanced oxidation processes such as $O_3$, $UV/TiO_2$, $O_3/UV$ and $O_3/UV/TiO_2$ on decolorization and COD removal of Rhodamine B(RhB) wastewater were considered. The results showed that the higher the $O_3$ concentration was, the higher the decolorization observed and the optimum $TiO_2$ dosage was 0.4 g/L in $UV/TiO_2$ and $O_3/UV/TiO_2$ process. $O_3/UV$ process showed the higher initial decolorization rate constant and the shorter termination time for decolorization than those of the $O_3$ process. The decolorization rate constants in various systems followed the order of $O_3/UV/TiO_2>O_3/UV>O_3{\gg}UV/TiO_2$. The decolorization rate of the RhB solution in every processes was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. The COD removal rate constants in four systems followed the order of $O_3/UV/TiO_2>O_3/UV>UV/TiO_2{\geqq}O_3$. Among four processes, combined photocatalysis and ozonation$(O_3/UV/TiO_2)$ was the most prospective process for removing color and COD such as dye wastewater.