Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.6.827

Investigation of Oxidation Methods of Organic Radical Polymer for Cathode Material in Lithium Ion Batteries  

Lee, Ilbok (School of Intergrative Engineering, Chung-Ang University)
Kim, Younghoon (Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT))
Moon, Ji-Yeon (School of Intergrative Engineering, Chung-Ang University)
Lee, Chul Wee (Green Chemical Technology Division, Korea Research Institute of Chemical Technology (KRICT))
Kim, Daeun (School of Intergrative Engineering, Chung-Ang University)
Ha, Kyoung-Su (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Dong Hyun (School of Intergrative Engineering, Chung-Ang University)
Son, Hyungbin (School of Intergrative Engineering, Chung-Ang University)
Yoon, Songhun (School of Intergrative Engineering, Chung-Ang University)
Publication Information
Polymer(Korea) / v.38, no.6, 2014 , pp. 827-831 More about this Journal
Abstract
An organic radical polymer (ORP) was prepared by radical polymerization and following oxidation into nitroxyl radical. Two different oxidation methods were employed and their radical concentrations were measured using electroparamagnetic resonance spectroscopy (EPR) and UV-visible absorption (UV-vis) spectroscopy. From these measurements, $H_2O_2-Na_2WO_4$ oxidation method exhibited a complete oxidation, which resulted in 97.6% spin concentration. Also, it was revealed that convenient and cheap UV-vis measurement was useful for preliminary radical concentration comparison. After applied as a cathode material in lithium ion batteries, ORP electrode showed a high initial capacity ($110mAh\;g^{-1}$), a good initial efficiency (96%), a very high rate performance (70% charging during 1.2 min) and stable cycle performance.
Keywords
organic radical polymer; oxidation; nitroxyl radical concentration; cathode; lithium ion batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nature, 407, 496 (2000).   DOI   ScienceOn
2 K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro, and E. Hasegawa, Chem. Phys. Lett., 359, 351 (2002).   DOI
3 K. Nakahara, J. Iriyama, S. Iwasa, M. Suguro, M. Satoh, and E. J. Cairns, J. Power Sources, 165, 870 (2007).   DOI   ScienceOn
4 H. Nishide, S. Iwasa, Y. J. Pu, T. Suga, K. Nakahara, and M. Satoh, Electrochim. Acta, 50, 827 (2004).   DOI   ScienceOn
5 T. Suga, H. Konishi, and H. Nishide, Chem. Commun., 17, 1730 (2007).
6 L. Bugnon, C. J. H. Morton, P. Novak, J. Vetter, and P. Nesvadba, Chem. Mater., 19, 2910 (2007).   DOI
7 R. Nozu, M. Iizuka, M. Nakanishi, and M. Kyotani, J. Power Sources, 186, 570 (2009).   DOI
8 I.-J. Kim, S. Yang, M.-J. Jeon, S.-I. Moon, H.-S. Kim, Y.-P. Lee, K.-H. An, and Y.-H. Lee, J. Power Sources, 173, 621 (2007).   DOI
9 Y. Kim, C. Jo, J. Lee, C. W. Lee, and S. Yoon, J. Mater. Chem., 22, 1453 (2012).   DOI
10 R.-G. Lin, Z. Tao, S.-F. Xue, Q.-J. Zhu, W. G. Jackson, Z.-B. Wei, and L.-S. Long, Polyhedron, 22, 3467 (2003).   DOI
11 S. Yoon, S. D. Bhatt, W. Lee, H. Y. Lee, S. Y. Jeong, J.-O. Baeg, and C. W. Lee, Korean J. Chem. Eng., 26, 64 (2009).   DOI   ScienceOn
12 K. Nakahara, S. Iwasa, J. Iriyama, Y. Morioka, M. Suguro, M. Satoh, and E. J. Carins, Electrochim. Acta, 52, 921 (2006).   DOI   ScienceOn
13 G.-A. Nazri and G. Pistoia, Lithium Batteries; Science and Technology, Kluwer Academic Publisher, 2004.
14 S. Yoon, C. Jo, S. Y. Noh, C. W. Lee, J. H. Song, and J. Lee, Phys. Chem. Chem. Phys., 13, 11060 (2011).   DOI   ScienceOn
15 J. K. Kim, G. Cheruvally, J. W. Choi, J. H. Ahn, D. S. Choi, and C. E. Song, J. Electrochem. Soc., 154, A839 (2007).   DOI   ScienceOn