• 제목/요약/키워드: UV light

검색결과 1,842건 처리시간 0.031초

섬유소재의 미세먼지 오염도 평가 방법 개발에 관한 연구 (Method to Evaluate Fabric Contamination Due to Fine Dust)

  • 황소영;권진경;김영실;최은진;김다진;김민;육세진
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.86-91
    • /
    • 2021
  • Recently, functional clothes that can reduce deposition and/or penetration of fine dust have been developed. However, there are no methods to quantitatively evaluate the performance of these clothes. In this study, we developed a method to contaminate a fabric using fine dust and established an approach to quantitatively assess the degree of particle contamination on the fabric surface. Silicate powder was chosen as the particle to simulate fine dust because silicate particles are fluorescent under UV light; therefore, they can be distinguished from any color of non-fluorescent fabric surface. A camera with a high-resolution lens system was used to scan the surface of the contaminated fabric surface, and the degree of particle contamination of the fabric surface was analyzed in terms of the pixels corresponding to the area of the fabric surface contaminated by silicate particles. Finished or unfinished nylon fabrics as well as cotton fabrics were contaminated with silicate particles, and their surfaces were scanned using the established camera. The proposed assessment method was found to be useful for quantitatively comparing the degree of particle contamination of the fabrics.

Radiation parameterizations and optical characterizations for glass shielding composed of SLS waste glass and lead-free materials

  • Thair Hussein Khazaalah;Iskandar Shahrim Mustafa ;M.I. Sayyed
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4708-4714
    • /
    • 2022
  • The novelty in the present search, the Soda-Lime-Silica (SLS) glass waste to prepare free lead glass shielding was used in order to limit the accumulation of glass waste, which requires extensive time to decompose. This also saves on the consumption of pure SiO2, which is a finite resource. Furthermore, the combining of BaO with Bi2O3 into a glass network leads to increased optical properties and improved attenuation. The UV-Visible Spectrophotometer was used to investigate the optical properties and the radiation shielding properties were reported for current glass samples utilizing the PhysX/PDS online software. The optical property results indicate that when BaO content increases in glass structure, the Urbach energy ΔE, and refractive index n increases while the energy optical band gap Eopt decreases. The result of the metallisation criteria (M) revealed that the present glass samples are nonmetallic (insulators). Furthermore, the radiation shielding parameter findings suggest that when BaO was increased in the glass structure, the linear attenuation coefficient and effective atomic number (Zeff) rose. But the half-value layer HVL declined as the BaO concentration grew. According to the research, the glass samples are non-toxic, transparent to visible light, and efficient radiation shielding materials. The Ba5 sample is considered the best among all the samples due to its higher attenuation value and lower HVL and MFP values, which make it a suitable candidate as transparent glass shield shielding.

SCAPS-1D 시뮬레이션을 이용한 n-i-p 구조 페로브스카이트 태양전지의 열적 열화 원인 분석 (Numerical Analysis on Thermal-Induced Degradation of n-i-p Structure Perovskite Solar Cells Using SCAPS-1D)

  • 김성탁;배수현;정영훈;한동운;김동환;모찬빈
    • Current Photovoltaic Research
    • /
    • 제10권1호
    • /
    • pp.16-22
    • /
    • 2022
  • The long-term stability of PSCs against visual and UV light, moisture, electrical bias and high temperature is an important issue for commercialization. In particular, since the operation temperature of solar cell can rise above 85℃, a study on thermal stability is required. In this study, the cause of thermal-induced degradation of PSCs was investigated using the SCAPS-1D simulation tool. First, PSCs of TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au structure were exposed to a constant temperature of 85℃ to observe changes in conversion efficiency and quantum efficiency. Because the EQE reduction above 500 nm was remarkable, we simulated PSCs performance as a function of lifetime, doping density of perovskite and spiro-OMeTAD. Consequently, the main cause of thermal-induced degradation is considered to be the change in the perovskite doping concentration and lifetime due to ion migration of perovskite.

Probing the Conditions for the Atomic-to-Molecular Transition in the Interstellar Medium

  • Park, Gyueun;Lee, Min-Young
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.50.2-51
    • /
    • 2021
  • Stars form exclusively in cold and dense molecular clouds. To fully understand star formation processes, it is hence a key to investigate how molecular clouds form out of the surrounding diffuse atomic gas. With an aim of shedding light in the process of the atomic-to-molecular transition in the interstellar medium, we analyze Arecibo HI emission and absorption spectral pairs along with TRAO/PMO 12CO(1-0) emission spectra toward 58 lines of sight probing in and around molecular clouds in the solar neighborhood, i.e., Perseus, Taurus, and California. 12CO(1-0) is detected from 19 out of 58 lines of sight, and we report the physical properties of HI (e.g., central velocity, spin temperature, and column density) in the vicinity of CO. Our preliminary results show that the velocity difference between the cold HI (Cold Neutral Medium or CNM) and CO (median ~ 0.7 km/s) is on average more than a factor of two smaller than the velocity difference between the warm HI (Warm Neutral Medium or WNM) and CO (median ~ 1.7 km/s). In addition, we find that the CNM tends to become colder (median spin temperature ~ 43 K) and abundant (median CNM fraction ~ 0.55) as it gets closer to CO. These results hints at the evolution of the CNM in the vicinity of CO, implying a close association between the CNM and molecular gas. Finally, in order to examine the role of HI in the formation of molecular gas, we compare the observed CNM properties to the theoretical model by Bialy & Sternberg (2016), where the HI column density for the HI-to-H2 transition point is predicted as a function of density, metallicity, and UV radiation field. Our comparison shows that while the model reproduces the observations reasonably well on average, the observed CNM components with high column densities are much denser than the model prediction. Several sources of this discrepancy, e.g., missing physical and chemical ingredients in the model such as the multi-phase ISM, non-equilibrium chemistry, and turbulence, will be discussed.

  • PDF

용액 플라즈마를 이용한 콜로이드 및 나노 구조 MnO2의 친환경 합성 (Green Synthesis of Colloidal and Nanostructured MnO2 by Solution Plasma Process)

  • 김혜민
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.315-322
    • /
    • 2023
  • In the present work, we address the new route for the green synthesis of manganese dioxide (MnO2) by an innovative method named the solution plasma process (SPP). The reaction mechanism of both colloidal and nanostructured MnO2 was investigated. Firstly, colloidal MnO2 was synthesized by plasma discharging in KMnO4 aqueous solution without any additives such as reducing agents, acids, or base chemicals. As a function of the discharge time, the purple color solution of MnO4- (oxidation state +7) was changed to the brown color of MnO2 (oxidation state +4) and then light yellow of Mn2+ (oxidation state +2). Based on the UV-vis analysis we found the optimal discharging time for the synthesis of stable colloidal MnO2 and also reaction mechanism was verified by optical emission spectroscopy (OES) analysis. Secondly, MnO2 nanoparticles were synthesized by SPP with a small amount of reducing sugar. The precipitation of brown color was observed after 8 min of plasma discharge and then completely separated into colorless solution and precipitation. It was confirmed layered type of nanoporous birnessite-MnO2 by X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), and electron microscopes. The most important merits of this approach are environmentally friendly process within a short time compared to the conventional method. Moreover, the morphology and the microstructure could be controllable by discharge conditions for the appropriate potential applications, such as secondary batteries, supercapacitors, adsorbents, and catalysts.

Electrochemical Detection of Hydroxychloroquine Sulphate Drug using CuO/GO Nanocomposite Modified Carbon Paste Electrode and its Photocatalytic Degradation

  • G. S. Shaila;Dinesh Patil;Naeemakhtar Momin;J. Manjanna
    • 전기화학회지
    • /
    • 제27권1호
    • /
    • pp.15-31
    • /
    • 2024
  • The antimalarial drug hydroxychloroquine sulphate (HCQ) has taken much attention during the first COVID-19 pandemic phase for the treatment of severe acute respiratory infection (SARI) patients. Hence it is interest to study the electrochemical properties and photocatalytic degradation of the HCQ drug. Copper oxide (CuO) nanoparticles, graphene oxide (GO) and CuO/GO NC (nanocomposite) modified carbon paste electrodes (MCPE) are used for the detection of HCQ in an aqueous medium. Electrochemical behaviour of HCQ (20 μM) was observed using CuO/MCPE, GO/MCPE and CuO/GO NC/MCPE in 0.1 M phosphate buffer at pH 7 with a scan rate of 20 to 120 mV s-1 by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) of HCQ was performed for 0.6 to 16 μM HCQ. The CuO/GO NC/MCPE showed a reasonably good sensitivity of 0.33 to 0.44 μA μM cm-2 with LOD of 69 to 92 nM for HCQ. Furthermore, the CuO/GO NC was used as a catalyst for the photodegradation of HCQ by monitoring its UV-Vis absorption spectra. About 98% was degraded in about 34 min under visible light and after 4 cycles it was 87%. The improved photocatalytic activity may be attributed to decrease in bandgap energy and enhanced ability for the electrons to migrate. Thus, CuO/GO NC showed good results for both sensing and degradation applications as well as reproducibility.

The luminescence properties of Eu3+ or Tb 3+ doped Lu2Gd1Ga2Al3O12 phosphors for X-ray imaging

  • M.J. Oh;Sudipta Saha;H.J. Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4642-4646
    • /
    • 2023
  • The Tb3+ or Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor were fabricated by funace at 1500 ℃ for 12 h using a solid state reaction. The XRD (X-ray diffraction_Panalytical X'Pert Pro) and FE-SEM (field emission scanning electron microscope) are measured to confirm the crystalline structure and surface morphology of the phosphor. The Tb3+-doped Lu2Gd1Ga2Al3O12 phosphor emits the lights in 470~650 nm wavelength range due to transitions from 5D4 to 7Fj. Therefore, it shows the green region in the CIE chromaticity diagram under both UV and X-rays excitations. The Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor emits the lights in 550~750 nm wavelength range because of 5Di to 7Fj. The emission is confirmed to be in the red region using the CIE chromaticity diagram. The Tb3+ or Eu3+-doped Lu2Gd1Ga2Al3O12 phosphor shows the characteristic f-f transition with a long decay time, which is about several milliseconds. They have the high efficiency of light emission for X-ray because of their high effective Z number (Zeff = 58.5) and density. Therefore, they are very much promising phosphors for X-ray imaging application in medical fields.

세척 용액 및 세척 방법이 3D 프린팅 임시수복용 레진의 굴곡강도에 미치는 영향 (Effect of Washing Solvent and Washing Method on Flexural Strength of 3D-Printed Temporary Resin Material)

  • 김해봄;최재원
    • 한국산업융합학회 논문집
    • /
    • 제27권2_2호
    • /
    • pp.389-395
    • /
    • 2024
  • The purpose of this study was to evaluate the effect of different washing solvents and washing methods on the flexural strength of 3D printed temporary resin. A bar(25 × 2 × 2 mm) was produced with a layer thickness of 50 ㎛ using an LCD-type 3D printer and divided into 15 groups(n = 10, each) according to washing solution(IPA; 99% isopropyl alcohol, TPM; 93% Tripropylene glycol monomethylether, ETL; Ethanol, TWC; Twin 3D Cleaner, and DNC; DIO navi Cleaner) and washing method(Dip; Dip washing, Ultra; Ultrasonic washing, and Auto; Automated washing). All groups were washed for 5 minutes, and post-cured for 5 minutes using a UV LED light curing machine. The Flexural strength was measured using a three-point bending test using a universal testing machine. For statistical analysis, one-way ANOVA, Tukey HSD post hoc test, Kruskal-Wallis test and post-hoc by Bonferroni-Dunn test(𝛼=.05) were performed depending on whether the normality test was satisfied. In all washing solvents except TPM and DNC, the Dip group showed the lowest flexural strength values, while the Auto group showed the highest flexural strength values except for DNC. Additionally, the washing solution showed completely different flexural strength values depending on the washing method.

나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성 (Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint)

  • 김대원;마영길;김종석
    • 공업화학
    • /
    • 제31권1호
    • /
    • pp.43-48
    • /
    • 2020
  • 본 연구에서는 침전과 수열처리에 의해 나노입방체와 나노막대구조를 갖는 Fe2O3 나노입자를 합성하였다. Fe2O3 나노 입자 표면에 TiO2가 20 nm 두께로 코팅된 Fe2O3/TiO2 core-shell (CS) 복합재료를 합성하였다. Fe2O3/TiO2 CS를 화학적 에칭과 열처리에 의해 Fe2O3/TiO2 CS에서 Fe2O3/TiO2 yolk-shell (YS) 형태의 복합재료를 제조하였다. FE-SEM, HR-TEM, XRD 분석을 통하여 Fe2O3와 Fe2O3/TiO2 CS 및 Fe2O3/TiO2 YS 안료의 물리적 특성을 측정하였다. 안료를 poly acrylate (PA) 수지에 혼합한 도료들의 일사반사율과 색상변화는 UV-Vis-NIR 분석으로 차열 온도는 실험실에서 제작한 차열 온도 측정기를 통해 측정하였다. Fe2O3/TiO2 YS 적색 안료를 사용한 PA 도료는 우수한 근적외선 반사율을 보였으며, Fe2O3 안료를 사용한 도료에 비해 차열 온도가 13 ℃ 감소하였다.

반응성염료에 의한 폐MDF 재생 목질섬유의 염색특성 (The Dyeing Properties of Woody Fiber Regenerated from Waste MDF by Reactive Dyes)

  • Ju, Seon-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권2호
    • /
    • pp.163-177
    • /
    • 2019
  • 폐MDF로부터 해섬하여 얻은 재생섬유를 Reactive Red H-E3B (Bis-monochlorotriazine(MCT)/MCT type)와 Reactive Red RB 133%(bis-monochlorotriazine/Vinyl sulphone type)로 염색할 때 최적의 염색조건을 구명하기 위하여 염색조건(염료 농도, 염과 알칼리 첨가량, 염색온도)과 염색특성 및 일광견뢰도와의 관계를 검토하였다. 2종의 반응성염료 모두 염료농도가 1~10(%,OWF)로 증가함에 따라 염착량(K/S)은 증가하였다. 또한, H-E3B가 RB 133%보다 염료 농도에 관계없이 K/S는 높았으며, 자외선 조사에 따른 색차는 낮아 자외선에 의한 변색 저항성이 양호하였다. 황산나트륨의 첨가량이 증가할수록 색차 및 K/S도 증가하였으며, 염의 첨가량은 50~70 g/L가 적절하였다. 2 g/L의 탄산나트륨 첨가에 의해 색차 및 K/S가 크게 증가하였으나 그 이상의 첨가량 증가에서는 거의 차이가 없었다. 탄산나트륨의 첨가량은 pH 10을 유지하는 5~10 g/L가 적절할 것으로 생각된다. H-E3B 염료는 염색 온도가 높아짐에 따라 염착량이 증가하다가 $80^{\circ}C$에서 다시 감소한 반면 RB 133%는 $60{\sim}70^{\circ}C$까지는 거의 동일한 염착량을 나타냈으나, 이후 감소하였다. 따라서 H-E3B는 $80^{\circ}C$, RB 133%는 $60^{\circ}C$가 적정한 것으로 판단된다. 이상의 최적조건에서 폐MDF 목질섬유를 염색처리하면 H-E3B염료는 1.5~2.0R, RB 133%염료는 9.6~10.0 PR의 색상을 가지는 염색 재생 목질섬유의 제조가 가능하였다.