• 제목/요약/키워드: UV laser

검색결과 422건 처리시간 0.023초

Nd:YAG UV 레이저를 이용한 연성회로 다층기판 절단특성에 대한 연구 (An analysis of Cutting Characteristic of Multilayer FPCB using Nd:YAG UV Laser System)

  • 최경진;이용현
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.9-17
    • /
    • 2010
  • The FPCB is used for electronic products such as LCD display. The process of manufacturing FPCB includes a cutting process, in which each single FPCB is cut and separated from the panel where a series of FPCBs are arrayed. The most-widely used cutting method is the mechanical punching, which has the problem of creating burrs and cracks. In this paper, the cutting characteristics of the FPCB have been experimented using Nd:YAG DPSS UV laser as a way of solving this problem. To maximize the industrial application of this laser cutting process, test samples of the multilayered FPCB have been chosen as it is actually needed in industry. The cutting area of the FPCB has four different types of layer structure. First, to cut the test sample, the threshold laser cut-off fluence has been found. Various combinations of laser and process parameters have been made to supply the acquired laser cut-off fluence. The cutting characteristics in terms of the variation of the parameters are analyzed. The laser and process parameters are optimized, in order to maximize the cutting speed and to reach the best quality of the cutting area. The laser system for the process automation has been also developed.

Low-k 웨이퍼 레이저 인그레이빙 특성에 관한 연구 (Study on low-k wafer engraving processes by using UV pico-second laser)

  • 남기중;문성욱;홍윤석;배한성;곽노흥
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2006년도 추계학술발표대회 논문집
    • /
    • pp.128-132
    • /
    • 2006
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355nm and 80MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow rate, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repetition rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20{\mu}m$ and $10{\mu}m$ at more than 500mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed of laser material process.

  • PDF

UV 레이저 어블레이션과 상변화 충진을 이용한 3차원 마이크로 부품의 쾌속 제작 (Rapid Manufacturing of 3D Micro Products by UV Laser Ablation and Phase Change Filling)

  • 신보성;김재구;장원석;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.26-29
    • /
    • 2003
  • UV laser micromachining are generally used to create microstructures for micro product through a sequence of lithography-based photopatterning steps. However, the micromachining process is not suitable for the rapid realization of complex microscale 3D product because it depends on worker experiences, excessive cost and time to make many masks. In this paper, the more effective micro rapid manufacturing process, which is developed upon the base of laser micromachining. is proposed to fabricate micro products directly using UV laser ablation and phase change filling. The filling process is useful to hold the micro product during the next ablation step. The proposed micro rapid manufacturing process is also proven experimentally that enables to fabricate the 3D microscale products of UV sensitive polymer from 3D CAD data to functional micro parts.

  • PDF

UV 레이저 어블레이션과 상변화 충진을 이용한 3차원 마이크로 부품의 쾌속 제작 (Rapid Manufacturing of 3D Micro Products by UV Laser Ablation and Phase Change Filling)

  • 신보성;김재구;장원석;황경현
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.196-201
    • /
    • 2005
  • UV laser micromachining are generally used to create microstructures for micro product through a sequence of lithography-based photopatterning steps. However, the micromachining process is not suitable for the rapid realization of complex 3D micro product because it depends on worker experiences, excessive cost and time to make many masks. In this paper, the more effective micro rapid manufacturing process, which is developed upon the base of laser micromachining, is proposed to fabricate micro products directly using UV laser ablation and phase change filling. The filling process is useful to hold the micro product during the next ablation step. The proposed micro rapid manufacturing process is also proven experimentally that enables to fabricate the 3D micro products of UV sensitive polymer from 3D CAD data to functional micro parts.

UV 레이저 어블레이션에 의한 3차원 형상 미세 구조물의 쾌속제작 (Rapid Manufacturing of 3D-Shaped Microstructures by UV Laser Ablation)

  • 신보성;양성빈;장원석;김재구;김정민
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.30-36
    • /
    • 2004
  • Recently, the lead-time of a product is to be shortened in order to satisfy consumer's demand. It is thus important to reduce the manufacturing time and the cost of 3D-shaped microstructures. Micro-Electro-Mechanical Systems (MEMS) and devices are usually fabricated by lithography-based methods. Above method is not flexible for the rapid manufacture of 3D-shaped microstructures because it depends on work's experiences and requires excessive cost and time for making many masks. In this paper, the effective laser micrornachining is developed to fabricate UV sensitive polymer microstructures using laser ablation. The proposed process, named by laser microRP, is a very useful method on rapid manufacturing for 3D-shaped microstructures.

UV 레이저를 이용한 폴리이미드 표면 개질에 관한 연구 (Polyimide Surface Modification using UV Laser)

  • 오재용;이정한;박덕수;신보성
    • 한국레이저가공학회지
    • /
    • 제13권3호
    • /
    • pp.13-18
    • /
    • 2010
  • In this paper, polyimide (PI) surface was modified by UV Laser with a low laser fluence and investigated changes of surface geometry and chemical characteristics by SEM (scanning electron microscope), X-ray diffraction (XRD), XPS (x-ray photoelectron spectroscopy) and the measurements of contact angle of water. PI surface was peeled off and modified with microstructure fabrications by photochemical ablation over the laser fluence of 50 mJ/cm2. As laser fluence increased, delamination of PI surface was occurred largely and strongly. In chemical characteristics, the O/C and N/C atomic ratios increased and contact angle decreased from $80^{\circ}$ to $40^{\circ}$.

  • PDF

변형률 속도 효과를 고려한 355 nm UV 레이저 구리재질의 싱글 펄스 전산해석 (Computational Analysis of 355 nm UV Laser Single-Pulsed Machining of Copper Material Considering the Strain Rate Effect)

  • 이정한;오재용;박상후;신보성
    • 한국기계가공학회지
    • /
    • 제9권3호
    • /
    • pp.56-61
    • /
    • 2010
  • Recently, UV pulse laser is widely used in micro machining of the research, development and industry field of IT, NT and BT products because the laser short wavelength provides not only micro drilling, micro cutting and micro grooving which has a very fine line width, but also high absorption coefficient which allows a lot of type of materials to be machined more easily. To analyze the dynamic deformation during a very short processing time, which is nearly about several tens nanoseconds, the commercial Finite Element Analysis (FEA) code, LS-DYNA 3D, was employed for the computitional simulation of the UV laser micro machining behavior for thin copper material in this paper. A finite element model considering high strain rate effect is especially suggested to investigate the micro phenomena which are only dominated by mechanically pressure impact in disregard of thermally heat transfer. From these computational results, some of dynamic deformation behaviors such as dent deformation shapes, strains and stresses distributions were observed and compared with previous experimental works. These will help us to understand micro interaction between UV laser beam and material.

355nm UV 레이저를 이용한 마이크로 렌즈 어레이 쾌속 제작에 관한 연구 (A Study on Rapid Fabrication of Micro Lens Array using 355nm UV Laser Irradiation)

  • 제순규;박상후;최춘기;신보성
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.310-316
    • /
    • 2009
  • Micro lens array(MLA) is widely used in information technology(IT) industry fields for various applications such as a projection display, an optical power regulator, a micro mass spectrometer and for medical appliances. Recently, MLA have been fabricated and developed by using a reflow method having the processes of micro etching, electroplating, micro machining and laser local heating. Laser thermal relaxation method is introduced in marking of microdots on the surface of densified glass. In this paper, we have proposed a new direct fabrication process using UV laser local thermal-expansion(UV-LLTE) and investigated the optimal processing conditions of MLA on the surface of negative photo-resist material. We have also studied the 3D shape of the micro lens obtained by UV laser irradiation and the optimal process conditions. And then, we made chrome mold by electroplating. After that, we made MLA using chrome mold by hot embossing processing. Finally, we have measured the opto-physical properties of micro lens and then have also tested the possibility of MLA applications.