• Title/Summary/Keyword: UV lamp

Search Result 274, Processing Time 0.024 seconds

Luminescence Characteristics of Blue and Yellow Phosphor for Near-Ultraviolet (자외선 여기용 청색 및 황색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.304-308
    • /
    • 2006
  • We have synthesized a $Eu^{2+}-activated\;Sr_3MgSi_2O_8$ blue phosphor and $(Sr,Ba)_2SiO_4$ yellow phosphor and prepared white LEDs by combining these phosphors with a InGaN UV LED chip. Three distinct emission bands from the InGaN-based LED and the two phosphors are clearly observed at 405 nm, 460 nm and at around 560 nm, respectively. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This blue emission was used as an optical transition of the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor. The 460 nm and 560 nm emission band is ascribed to a radiative recombination of $Eu^{2+}$ impurity ions in the $Sr_3MgSi_2O_8:Eu$ and $(Sr,Ba)_2SiO_4$ host matrix. As a consequence of a preparation of UV White LED lamp using the $Sr_3MgSi_2O_8:Eu$ blue phosphor and $(Sr,Ba)_2SiO_4:Eu$ yellow phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/two phosphor (1/0.2361). At this time, the CIE chromaticity was CIE x = 0.3140, CIE y = 0.3201 and CCT (6500 K).

Degradation of residual pharmaceuticals in water by UV/H2O2 advanced oxidation process (UV/H2O2 고도산화기술을 이용한 수중 잔류의약물질 제거)

  • Park, Chinyoung;Seo, Sangwon;Cho, Ikhwan;Jun, Yongsung;Ha, Hyunsup;Hwang, Tae-Mun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2019
  • This study was conducted to evaluate the degradation and mineralization of PPCPs (Pharmaceuticals and Personal Care Products) using a CBD(Collimated Beam Device) of UV/H2O2 advanced oxidation process. The decomposition rate of each substance was regarded as the first reaction rate to the ultraviolet irradiation dose. The decomposition rate constants for PPCPs were determined by the concentration of hydrogen peroxide and ultraviolet irradiation intensity. If the decomposition rate constant is large, the PPCPs concentration decreases rapidly. According to the decomposition rate constant, chlortetracycline and sulfamethoxazole are expected to be sufficiently removed by UV irradiation only without the addition of hydrogen peroxide. In the case of carbamazepine, however, very high UV dose was required in the absence of hydrogen peroxide. Other PPCPs required an appropriate concentration of hydrogen peroxide and ultraviolet irradiation intensity. The UV dose required to remove 90% of each PPCPs using the degradation rate constant can be calculated according to the concentration of hydrogen peroxide in each sample. Using this reaction rate, the optimum UV dose and hydrogen peroxide concentration for achieving the target removal rate can be obtained by the target PPCPs and water properties. It can be a necessary data to establish design and operating conditions such as UV lamp type, quantity and hydrogen peroxide concentration depending on the residence time for the most economical operation.

The Study on the Performance Estimation of UVC Air Sterilizer for Preventing Transmission of Air Borne Contagion (공기감염 전파방지를 위한 UVC 공기살균기 성능평가에 관한 연구)

  • Choi Sang Gon;Hong Jin Kwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.581-586
    • /
    • 2005
  • Recently, the use of UVGI system has been increasing in both medical and nonmedical buildings for the control of environmental microorganisms. In the present study, irradiance performance test of UVC lamp was carried out and indoor air sterilization effect of UV ray for preventing transimission of air borne contagion was investigated by using manufactured UVC air sterilizer. Experimental results show that the effective irradiance of UVC lamp is strongly dependent on air velocity and temperature in irradiance performance test. An individual microbiological killing effectiveness experiment also shows that the average kill rate of two microbiological samples such as bacteria and fungus is about $92\%$ by using manufactured UVC air sterilizer. Additionally irradiance performance experimental results also show that the ballast is very important factor to keep up irradiance performance of UVC lamp.

Photo and Electrocatalytic Treatment of Textile Wastewater and Its Comparison

  • Singaravadivel, C.;Vanitha, M.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Electrochemical and photochemical techniques have been proved to be effective for the removal of organic pollutants in textile wastewater. The present study deals with degradation of synthetic textile effluents containing reactive dyes and assisting chemicals, using electro oxidation and photo catalytic treatment. The influence of various operating parameters such as dye concentration, current density, supporting electrolyte concentration and lamp intensity on TOC removal has been determined. From the present investigation it has been observed that nearly 70% of TOC removal has been recorded for electrooxidation treatment with current density 5 mA/$dm^2$, supporting electrolyte concentration of 3 g/L and in photocatalytic treatment with 250 V as optimum lamp intensity nearly 67% of TOC removal was observed. The result indicates that electro oxidation treatment is more efficient than photocatalytic treatment for dye degradation.

Improving Light Stability of Natural Rubber Latex Foam

  • Shim, Chang Su;Oh, Jeong Seok;Hong, Chang Kook
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • In this study, natural rubber latex foam was prepared in order to replace commercialized polyurethane foams as a car seat material. Physical properties of the latex foam were investigated and the light stability was improved. The latex foam was mixed in an aqueous solution state, and the degree of foaming and the accelerator ratios were appropriately controlled. Tensile properties, hysteresis and dynamic mechanical properties of the latex foam were measured to compare with those of polyurethane foams. UV light absorbers and radical scavengers were added for improving light stability of the latex foam. Xenon lamp test was conducted to investigate the effects of the reagents on light stability. Our results revealed that the prepared latex foam including a light absorber with an antioxidant showed excellent light stable performances.

Decolorization of a Rhodamine B Using Photoelectrocatalytic and Electrolytic/UV Process (광전기촉매 공정과 전기/UV 공정을 이용한 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1023-1032
    • /
    • 2008
  • The feasibility study of the application of the photoelectrocatalytic and electrolytic/UV decolorization of Rhodamine B (RhB) was investigated in the photoelectrocatalytic and electrolytic/UV process with $TiO_2$ photoelectrode and DSA (dimensionally stable anode) electrode. Three types of $TiO_2$ photoelectrode were used. Thermal oxidation electrode (Th-$TiO_2$) was made by oxidation of titanium metal sheet; sol-gel electrode (5G-$TiO_2$) and powder electrode (P-$TiO_2$) were made by coating and then heating a layer of titania sol-gel and slurry $TiO_2$ on titanium sheet. DSA electrodes were Ti and Ru/Ti electrode. The relative performance for RhB decolorization of each of the photoelecoodes and DSA electrodes is: Ru/Ti > Ti > SG-$TiO_2$ > Th-$TiO_2$. It was observed that photoelectrocatalytic decolorization of RhB is similar to the sum of the photocatalytic and electrolytic decolorization. Therefore the synergetic effect was not showed in pthotoelectrocatalytic reaction. $Na_{2}SO_{4}$ and NaCl showed different decolorization effect between pthotoelectrocatalytic and electrolytic/UV reaction. In the presence of the NaCl, RhB decolorization of Ru/Ti DSA electrode was higher than that of the other photoelectrode and Ti electrode. Optimum current, NaCl dosage and UV lamp power of the electrolytic/UV process (using Ru/Ti electrode) were 0.75 A, 0.5 g/L and 16 W, respectively.

Removal of Gaseous Toluene Using a TiO2 Photocatalytic System with Mist Generated by Ultrasonic Atomization (초음파 발생 미스트를 이용한 TiO2 광촉매 시스템에서의 가스상 톨루엔 제거)

  • Choi, Min-Suk;Han, Se-Hyun;Jang, Sung-Chan;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.211-218
    • /
    • 2009
  • Feasibility study of using $Ti0_2$ mist generated by ultrasonic atomization for photocatalytic degradation of gaseous toluene was attempted in this study. For this, the photocatalytic reactor consisting of mist generator and photo-reactor was designed. Most of experimental results showed that steady state reached about 30 minutes after the start of experiments. The effects of $Ti0_2$ concentration, toluene concentration, and UV wavelength on toluene removal ratio were investigated. It was found that the highest removal efficiency was obtained when $Ti0_2$ concentration was 0.6 g/L in slurry. At this condition, it was found that the toluene removal efficiency increased as toluene concentration in feed decreased. In order to investigate the effect of UV wavelength, experiments were carried out using three UV lamps with different UV wavelength. The results showed that the highest removal efficiency was achieved when the lamp with the shortest wavelength were employed.

Photocatalytic Degradation of Benzene in the Gas Phase using TiO2 Coated on Ceramic and Glass Beads (세라믹과 유리에 코팅한 TiO2 광촉매를 이용한 가스상 벤젠의 제거)

  • 손현석;양원호;김현용;이소진;박종래;조경덕
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2003
  • TiO$_2$ sol was prepared by sol-gel method, and this sol was coated in ceramic and glass bead by dip-coating method. The coated catalyst was applied to degrade benzene in the gas phase by exposing to UV -lamp (365 nm) in a batch reactor. The removal efficiency of the benzene was compared by changing various conditions such as the kind of chemical additives, the coating beads (ceramic and glass), solution pH, the initial concentration of TiO$_2$ sol, UV intensity, and benzene concentration. The physical structure of TiO$_2$ sol used in this study was found to be pu-rely anatase type from XRD analysis. The results showed that ceramic bead was effective as the coating agent rath-er than glass bead. The significant change in the benzene removal efficiency of benzene did not occur with chang-ing coating frequency and the initial concentration of TiO$_2$ sol. The removal efficiency of benzene increased with increasing UV intensity, and with acidic treatment of TiO$_2$-coated ceramic bead.

Synthesis of N-doped Titania using Ammonium Hydroxide and Photocatalytic Degradation of Humic Acid (암모니아수를 이용한 N-doped TiO2 제조 및 부식산의 광촉매 분해)

  • Cho, A-Young;Nam, Yun-Seon;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.95-102
    • /
    • 2012
  • To advance luminance efficiency of Titania at visible range, N-doped $TiO_2$ was prepared by using ammonium hydroxide as a source of nitrogen. The photoactivities of the synthesized $TiO_2$ were evaluated on the basis of degradation of humic acid in aqueous solutions with different light sources, UV-C, UV-A and fluorescent lamp. As a result, at UV-C is high efficiency $UV_{254}$ decrease and TOC removal. In this study, the best synthetic conditions of N-doped $TiO_2$ were 5.0 M of ammonium hydroxide concentration and calcination temperature of $550^{\circ}C$. The degradation rate of humic acid as an evaluation of photoactivities of the catalysts were conducted with pH variation, decrease rate of molecular absorption, removal rate of total organic carbon and fluorescece evolution for humic acid solution. XRD and SEM were applied for analysis of surface analysis of the catalysts.

  • PDF

Effect of surface roughness on the quality of silicon epitaxial film grown after UV-irradiated gas phase cleaning

  • Kwon, Sung-Ku;Kim, Du-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.504-509
    • /
    • 1999
  • In-situ cleaning and subsequent silicon epitaxial film growth were performed in a load-locked reactor equipped with Hg-grid UV lamp and PBN heater to obtain the smooth and contaminant-free underlying surface and develop low-temperature epitaxial film growth process. The removals of organic and native oxide were investigated using UV-excited $O_2$ and $NF_{3}/H_{2}$, and the effect of the surface condition was examined on the quality of silicon epitaxial film grown at temperature as low as $750^{\circ}C$. UV-excited gas phase cleaning was found to be effective in removing the organic and native oxide successfully providing a smooth surface with RMS roughness of 0.5$\AA$ at optimal condition. Crystalline quality of epitaxial film was determined by smoothness of cleaned surface and the presence of native oxide and impurity. Crystalline defects such as dislocation loops or voids due to the surface roughness were observed by XTEM.

  • PDF