• Title/Summary/Keyword: UV irradiance

Search Result 39, Processing Time 0.024 seconds

Characteristics and Prediction of Total Ozone and UV-B Irradiance in East Asia Including the Korean Peninsula (한반도를 포함한 동아시아 영역에서 오존전량과 유해자외선의 특성과 예측)

  • Moon, Yun-Seob;Seok, Min-Woo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.701-718
    • /
    • 2006
  • The average ratio of the daily UV-B to total solar (75) irradiance at Busan (35.23$^{\circ}$N, 129.07$^{\circ}$E) in Korea is found as 0.11%. There is also a high exponential relationship between hourly UV-B and total solar irradiance: UV-B=exp (a$\times$(75-b))(R$^2$=0.93). The daily variation of total ozone is compared with the UV-B irradiance at Pohang (36.03$^{\circ}$N, 129.40$^{\circ}$E) in Korea using the Total Ozone Mapping Spectrometer (TOMS) data during the period of May to July in 2005. The total ozone (TO) has been maintained to a decreasing trend since 1979, which leading to a negative correlation with the ground-level UV-B irradiance doting the given period of cloudless day: UV-B=239.23-0.056 TO (R$^2$=0.52). The statistical predictions of daily total ozone are analyzed by using the data of the Brewer spectrophotometer and TOMS in East Asia including the Korean peninsula. The long-term monthly averages of total ozone using the multiplicative seasonal AutoRegressive Integrated Moving Average (ARIMA) model are used to predict the hourly mean UV-B irradiance by interpolating the daily mean total ozone far the predicting period. We also can predict the next day's total ozone by using regression models based on the present day's total ozone by TOMS and the next day's predicted maximum air temperature by the Meteorological Mesoscale Model 5 (MM5). These predicted and observed total ozone amounts are used to input data of the parameterization model (PM) of hourly UV-B irradiance. The PM of UV-B irradiance is based on the main parameters such as cloudiness, solar zenith angle, total ozone, opacity of aerosols, altitude, and surface albedo. The input data for the model requires daily total ozone, hourly amount and type of cloud, visibility and air pressure. To simplify cloud effects in the model, the constant cloud transmittance are used. For example, the correlation coefficient of the PM using these cloud transmissivities is shown high in more than 0.91 for cloudy days in Busan, and the relative mean bias error (RMBE) and the relative root mean square error (RRMSE) are less than 21% and 27%, respectively. In this study, the daily variations of calculated and predicted UV-B irradiance are presented in high correlation coefficients of more than 0.86 at each monitoring site of the Korean peninsula as well as East Asia. The RMBE is within 10% of the mean measured hourly irradiance, and the RRMSE is within 15% for hourly irradiance, respectively. Although errors are present in cloud amounts and total ozone, the results are still acceptable.

Characteristics of Environmental Solar Ultraviolet Irradiance

  • Sasaki, Masako;Oyanagi, Takehiko;Takeshita, Shu
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.154-157
    • /
    • 2002
  • Direct, continuous, and accurate measurements of solar ultraviolet irradiance (290-400 nm: UVR) have been carried out since 1990, by using both band-spectral ultraviolet-B (290-320 nm: UV-B) and ultraviolet-A (320-400 nm: UV-A) radiometers at Tokai University in Hiratsuka, Japan (35$^{\circ}$N, 139$^{\circ}$E). From our observations, the following findings are provided: 1) an increasing trend in solar UV -B from Oct. 1990 to Sept. 2000; 2) a regional comparison of solar UVR in Japan; 3) the distinct characteristics of UV-B and UV-A irradiance, such as diffuse property, daily and seasonal variation; and 4) human body protection against solar UVR. An increasing 10-year trend in global solar UV - B in Hiratsuka corresponded to a decrease in the total ozone amount measured at Tsukuba (36$^{\circ}$N, 140$^{\circ}$E), giving supportive evidence for a direct link between these two parameters. Furthermore, a strong correlation was found between solar UV-B and total ozone amount from results of UVR measurements at four Tokai University monitoring stations dispersed throughout Japan. Additional results revealed different diffuse properties in global solar UV and in global solar total (300-3000 nm: Total) irradiances. For example, in the global UVR, the diffuse component was dominant: about 80 % independent of weather, with more than 60 % of global UV-B, and more than 50% of global UV-A with even a cloudless clear sky. On the other hand, the portion of the diffuse in the global total irradiance was very low, less than 10 % on a cloudless clear day. Daily and seasonal variations of UV -B and UV -A irradiances were found to be quite different, because of the marked dependence of UV -B irradiance on the atmospheric ozone amount. Moreover, UV -B irradiance showed large daily and seasonal variations: the ratio between maximum and minimum irradiances was more than 5. In contrast, the variation in UV-A was small: the ratio between maximum and minimum was less than 2. Three important facts are proposed concerning solar UVR protection of the human body: 1) the personal minimal erythema dose (MED); 2) gender based difference in MED values; and 3) proper colors for UVR protective clothing.

  • PDF

Characteristics of Erythemal Ultraviolet Irradiance operating at Korea Meteorological Administration (기상청에서 운용 중인 지역별 지표 홍반자외선(EUV-B) 복사의 특성)

  • Hong Gi-Man;Choi Byoung-Cheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.223-233
    • /
    • 2006
  • We analyzed the monthly and seasonal mean of the daily Erythemal Ultraviolet-B (EUV-B, $280{\sim}320nm$) irradiance operating in Pohang, Anmyeon, Gosan, Mokpo and Kangnung with UV-Biometer (Solar Light Co., Model No. 501) at clear-sky noon during the period from 1999 to 2004. Also, we investigated the seasonal and regional characteristics for the UV index over the Korean Peninsula. The daily maximum occurred near solar southing time and the highest monthly accumulated EUV-B irradiance appeared in July and August at each regional observatory. The monthly mean value of the clear-sky EUV-B irradiance in Pohang, Anmyeon, Gosan, Mokpo and Kangnung showed 196.6, 161.8, 221.9, $171.5mWm^{-2}\;and\;179.7mWm^{-2}$ near noon in July respectively. The annual mean value of the daily accumulated EUV-B irradiance in Pohang, Anmyeon, Gosan, Mokpo and Kangnung were 1.8, 2.1, 2.2, $1.8kJm^{-2}\;and\;1.5kJm^{-2}$ respectively. The UV Index (UVI) showed above UVI 7(High) more than 90 days during one year over the Korean Peninsula.

Characteristics of the Erythemal Ultraviolet-B (EUV-B) Irradiance in Anmyeon (Korea Global Atmosphere Watch Center)

  • Hong, Gi-Man;Park, Jeong-Gyoo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.74-82
    • /
    • 2008
  • We have examined seasonal and annual means of clear-sky solar noon and daily erythemal ultraviolet-B irradiances measured in Anmyeon. The intensity of the EUV-B irradiance is mainly dependent on solar zenith angle (SZA) and total ozone amounts on clear day conditions. The daily maximum occurs near solar noon time and the highest monthly accumulated EUV-B is seen in July in Anmyeon. The maximum daily variation occurs in June and July due to precipitation and clouds. The 7-year trend of EUV-B irradiance shows that it is slightly increasing. Additionally, we could confirm that aerosol effects such as Asian Dust decreases the EUV-B irradiance reaching the ground surface by 35% to 60%. For more than 45% of the summer days, EUV-B irradiacne was high enough that the UV index registered higher than category Extremely High. This information will be very important for evaluation of the UV index for prevention of both skin cancer and ecosystem damages as well as to understand UV climatology over the Korean Peninsula.

The effects of clouds on enhancing surface solar irradiance (구름에 의한 지표 일사량의 증가)

  • Jung, Yeonjin;Cho, Hi Ku;Kim, Jhoon;Kim, Young Joon;Kim, Yun Mi
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.131-142
    • /
    • 2011
  • Spectral solar irradiances were observed using a visible and UV Multi-Filter Rotating Shadowband Radiometer on the rooftop of the Science Building at Yonsei University, Seoul ($37.57^{\circ}N$, $126.98^{\circ}E$, 86 m) during one year period in 2006. 1-min measurements of global(total) and diffuse solar irradiances over the solar zenith angle (SZA) ranges from $20^{\circ}$ to $70^{\circ}$ were used to examine the effects of clouds and total optical depth (TOD) on enhancing four solar irradiance components (broadband 395-955 nm, UV channel 304.5 nm, visible channel 495.2 nm, and infrared channel 869.2 nm) together with the sky camera images for the assessment of cloud conditions at the time of each measurement. The obtained clear-sky irradiance measurements were used for empirical model of clear-sky irradiance with the cosine of the solar zenith angle (SZA) as an independent variable. These developed models produce continuous estimates of global and diffuse solar irradiances for clear sky. Then, the clear-sky irradiances are used to estimate the effects of clouds and TOD on the enhancement of surface solar irradiance as a difference between the measured and the estimated clear-sky values. It was found that the enhancements occur at TODs less than 1.0 (i.e. transmissivity greater than 37%) when solar disk was not obscured or obscured by optically thin clouds. Although the TOD is less than 1.0, the probability of the occurrence for the enhancements shows 50~65% depending on four different solar radiation components with the low UV irradiance. The cumulus types such as stratoculmus and altoculumus were found to produce localized enhancement of broadband global solar irradiance of up to 36.0% at TOD of 0.43 under overcast skies (cloud cover 90%) when direct solar beam was unobstructed through the broken clouds. However, those same type clouds were found to attenuate up to 80% of the incoming global solar irradiance at TOD of about 7.0. The maximum global UV enhancement was only 3.8% which is much lower than those of other three solar components because of the light scattering efficiency of cloud drops. It was shown that the most of the enhancements occurred under cloud cover from 40 to 90%. The broadband global enhancement greater than 20% occurred for SZAs ranging from 28 to $62^{\circ}$. The broadband diffuse irradiance has been increased up to 467.8% (TOD 0.34) by clouds. In the case of channel 869.0 nm, the maximum diffuse enhancement was 609.5%. Thus, it is required to measure irradiance for various cloud conditions in order to obtain climatological values, to trace the differences among cloud types, and to eventually estimate the influence on solar irradiance by cloud characteristics.

Assessment on the Variability of Total Ozone for Climate Change over Korea

  • Moon, Yun-Seob;Shin, Hye-Jung;Oh, Sung-Nam;Park, Byoung-Cheol;Chung, Hyo-Sang;Kim, Yoo-Keun;Kim, Seong-Kyoun
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • Ozone is one of the most significant atmospheric constituents controlling the intensity of solar UV-B irradiance (280 to 320nm), and the decrease of the total ozone amount supported by ozonesondes and spectrometers will result in the increase of UV-B irradiance at the earth's surface. For example, 1% decrease in stratospheric ozone is expected to yield a 2-3% increase in UV-B irradiance and in the incidence of skin cancer. (omitted)

  • PDF

Relationship between Stratospheric Ozone and Solar Ultraviolet B Irradiance in Taegu, Korea

  • Suh, Kye-Hong;Cho, Young-Joon
    • The Korean Journal of Ecology
    • /
    • v.24 no.2
    • /
    • pp.117-119
    • /
    • 2001
  • Solar ultraviolet-B (UV-B) irradiances incident on a horizontal surface at Taegu, Korea during 1996-1998 were calculated with 5 minute averages of measurements taken every 30 seconds by a broadband UV-B sensor. The average, maximum and minimum of daily UV-B dose were 11.31, 22.04 and 3.20kJ m$^{-2}$ day$^{-1}$ , respectively, for the measuring period. Variations in stratospheric ozone concentration measured from space explain 85% of changes in the daily UV-B dose. It was expected that decrease of 50 Du in stratospheric ozone cause increase of 24.1% in daily UV-B dose in this study.

  • PDF

Recent Changes in Solar Irradiance, Air Temperature and Cloudiness at King Sejong Station, Antarctica (남극 세종기지에서 최근 태양 복사, 기온과 운량의 변화)

  • Lee, Bang Yong;Cho, Hi Ku;Kim, Jhoon;Jung, Yeon Jin;Lee, Yun Gon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.333-342
    • /
    • 2006
  • The long-term trends of global solar irradiance, air temperature, specific humidity and cloudiness measured at King Sejong station, Antarctica, during the period of 1988-2004, have been investigated. A statistically insignificant decrease, -0.21 $Wm^{-2}yr^{-1}$ (-0.26 %$yr^{-1}$, P<0.5) in global solar irradiance was found in an analysis from the time series of the monthly mean values, except for the increasing trends only in two months of January and June. The trends in irradiance are directly and inversely associated with the cloudiness trends in annual and monthly means. The trends in surface air temperature show a slight warming, $0.03^{\circ}Cyr^{-1}$ (1.88 %$yr^{-1}$, P<0.5) on the annual average, with cooling trend in the summer months and the warming in the winter. The exact relationship, if any, between the irradiance and temperature trends is not known. No significant tendency was found in specific humidity for the same periods. Recent (1996-2004) erythermal ultraviolet irradiance shows decreasing trend in annual mean, -0.15 $mWm^{-2}yr^{-1}$ (-1.18 %$yr^{-1}$, P<0.1) which is about five times the trends of global solar irradiance. The ratio of erythermal ultraviolet to global solar irradiance shows remarkable seasonal variations with annual mean value of 0.01 % and a peak in October and November, showing the increase of ultraviolet irradiance resulting from the Antarctic ozone hole. The sensitivity of global solar irradiance to the change in cloudiness is roughly $13%oktas^{-1}$ which is about twice of the value at the South Pole due to the difference in the average surface reflectance between the two stations. Much more sensitive values of $59%oktas^{-1}$ was found for erythermal UV irradiance than for the global solar irradiance.

Experimental Study on the Irradiation and Surface Sterilization Effect of Ultra Violet Ray in Air Conditioning System (공조시스템에서 UV Ray의 조사 및 표면살균성능에 관한 실험적 연구)

  • 홍진관
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.250-257
    • /
    • 2004
  • Recently, the use of UVC lamps inside building air-conditioning system has been increasing in both medical and nonmedical buildings for the control of environmental microorganisms. In the present study, irradiance performance test of UVC lamp was carried out and surface sterilization effect of UV ray was investigated by using UV ray irradiation experimental chamber and pilot system. Experimental results show that the effective irradiance of UVC lamp is strongly dependent on air velocity and temperature with exception of relative huminity in air-conditioning system. An individual microbiological kill effectiveness experiment also shows that the fractional kill of two microbiological samples such as E. Coli and Legionella is roughly the same as the estimated fractional kill in the case of chamber test and pilot system test.

Fabrication of polymer tip on an optical fiber end-face by guided UV light (도파된 UV 빛에 의한 광섬유 단면의 폴리머 팁 제작)

  • Park, Min-Gyu;Jeong, Ho-Jung;O, Gyeong-Hwan
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.147-148
    • /
    • 2009
  • We have fabricated a down tapered polymer tip on optical fiber end-face by a guided UV light. One side of fiber was aligned with a mercury-xenon lamp and another was put into UV curable polymer. A shape of tip was controlled by adjusting an irradiance of lamp and time of exposure. A bending effect also affects the result. Optical characteristic was achieved preliminarily with solution of minute particles.

  • PDF