• Title/Summary/Keyword: UV dose

Search Result 350, Processing Time 0.023 seconds

Effect of UV-C Irradiation on the Quality of Red Pepper Powder during Storage (UV-C 조사가 고춧가루의 저장 중 품질에 미치는 영향)

  • Chun, Ho-Hyun;Kim, Ju-Yeon;Kim, Hyun-Jin;Song, Kyung-Bin
    • Food Science and Preservation
    • /
    • v.16 no.3
    • /
    • pp.454-458
    • /
    • 2009
  • The effect of UV-C irradiation on microbial growth and quality of red pepper powder during storage was examined. Red pepper powder was irradiated with doses of 27, 54, or $108\;kJ/m^2$ and stored at $20^{\circ}C$ for 4 weeks. UV-C treatment of red pepper powder decreased the populations of total aerobic bacteria and Bacillus cereus in proportion to radiation dose. In particular, total aerobic bacteria and B. cereus populations decreased by 1.03 and 0.90 log CFU/g after irradiation at $108\;kJ/m^2$, respectively, compared with control values. UV-C irradiation caused negligible changes in the Hunter color L, a, or b values. Sensory quality results on red pepper powder were not significantly different between treatments. Therefore, UV-C irradiation can be used to inhibit microbial growth in red pepper powder, without impairing quality during storage.

Evaluation of Disinfection Characteristics of Ozone, UV Processes for Bacillus Subtilis Spores Inactivation (Bacillus Subtilis Spores 불활성화 실험을 통한 오존, UV 공정의 소독 특성 평가)

  • Jung, Yeon Jung;Oh, Byung Soo;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.672-677
    • /
    • 2006
  • Ozone/UV combined process is an effective technique to enhance generation of OH radical which is non-selective and powerful oxidant. The objective of this study is to evaluate the inactivation rates of B. subtilis spores by three candidate processes (ozone alone, UV alone, ozone/UV combined processes) at 4 and $20^{\circ}$ and to investigate the effects of OH radical on inactivation of B. subtilis spores. On the UV alone process, required UV dosages for lag phase and 3-log inactivation of B. subtilis spores were determined as $8.9mJ/cm^2$ and $47mJ/cm^2$. However, the inactivation of B. subtilis spores didn't occured beyond 4.5-log inactivation despite increasing UV dose. The inactivation of B. subtilis spores by ozone alone and ozone/UV combined process was investigated with ozone CT (Concentration of disinfectant ${\times}$ Contact time) concept. As a result, inactivation of B. subtilis spores by ozone/UV combined process was faster than by ozone alone, and especially $CT_{lag}$ value B. subtilis spores in the presence and absence of t-BuOH, OH radical scavenger, was investigated to evaluate effects of OH radical formed during ozone/UV combined process. We found that OH radical plays important roles on inactivation of B. subtilis spores.

EFFECTS OF ULTRAVIOLET LIGHT AND NUCLEIC ACID DERIVATIVES ON THE REPRODUCTIVE RATE OF AZOTOBACTER (Azotobacter의 증진율에 미치는 자외선 및 nucleic acid derivatives의 영향)

  • Lee, Min-Jai
    • Journal of Plant Biology
    • /
    • v.3 no.2
    • /
    • pp.1-5
    • /
    • 1960
  • Azotobacter is isolated from soil and its purified species is identified as A. chroococcum. The survival rate of Azotobacter irradiated with UV light is measured, and the reproductive rates of the survivals are calculated. In general, not only the survival rate, but also the length of the generation time of the survival progeny is inversely proportional to the irradiated dose of UV light. The reproduvtive rate of Azotobacter is increased with the exogeneous treatment of nucleic acid derivatives.

  • PDF

Protective actions of Rubus coreanus ethanol extract on collagenous extracellular matrix in ultraviolet-B irradiation-induced human dermal fibroblasts

  • Bae, Ji-Young;Lim, Soon-Sung;Choi, Jung-Suk;Kang, Young-Hee
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.279-284
    • /
    • 2007
  • Solar ultraviolet (UV) irradiation leads to distinct changes in the skin connective tissues by degradation of collagen, which is a major structural component in the extracellular matrix. UV irradiation induces the production of matrix metalloproteinases (MMP) capable of attacking native fibrillar collagen and responsible for inhibiting the construction of collagenous extracellular matrix. In this study, we attempted to investigate the protective actions of Rubus coreanus ethanol extract (RCE) on the MMP production and the consequent procollagen/collagen degradation in UV-B-irradiated human dermal fibroblasts. The analytical data showed that Rubus coreanus ethanol extract was mostly comprised of cyanidin 3-rutinoside. Pre-treatment of fibroblasts with this extract inhibited UV-B-induced production of MMP-1, MMP-8 and MMP-13 in dose-dependent manners. In addition, Western blot analysis and immunocytochemical staining assay revealed that RCE markedly augmented the cellular levels of procollagen/collagen declined in UV-B-exposed dermal fibroblasts. These results demonstrate that RCE blocks UV-B-induced increase of the collagen degradation by inhibiting MMP production. Thus, RCE may act as an agent inhibiting excessive dermal collagen degradation leading to the skin photoaging.

CELL MORPHOLOGY CHANGE BY THE ULTRAVIOLET RAY IRRADIATION

  • Park, Myoung-Joo;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.15-24
    • /
    • 2009
  • The effect of low doses of ultraviolet (UV) irradiation on morphology changes of cell has been studied based on the observation of the cell length. It was shown that UV-irradiated cell has different behavior in comparison with non-irradiated cell. From the histogram of cell-length distribution, it was confirmed that cell cycle of non irradiated cell was 28 hours, and that cell cycle of irradiated cell with dose of $20\;Jm^{-2}$ was delayed (39 hours), while irradiated cell with $40\;Jm^{-2}$ and $60\;Jm^{-2}$ did not divide and kept growing continuously. It was supposed that in case of $20\;Jm^{-2}$ of irradiation dose, the cell cycle was delayed because the checkpoint worked in order to repair DNA damage induced by generation of pyrimidine dimer, reactive oxygen species and so on. It was also supposed that in case of $40\;Jm^{-2}$ and $60\;Jm^{-2}$ of irradiation dose, overgrowth was induced because the checkpoint was not worked well. The morphology of overgrown cell was similar to that of normally senescent cell. Therefore, it was considered that cell senescence was accelerated by UV irradiation with irradiation doses of $40\;Jm^{-2}$ and $60\;Jm^{-2}$.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.

The UV LED Bar Optimal Design with Human Detection and Control Function (인체 감지 제어 기능을 갖는 UV LED Bar의 최적 설계)

  • Kim, Chang-Sun;Lee, Jae-Hak;Goh, Young-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1219-1226
    • /
    • 2017
  • In this paper, it is performed the optimal design of the UV LED bar which can be used variously. The UV LED Bar emits ultraviolet rays, so it is important to emit ultraviolet rays constantly for the purpose of use. In order to emit a certain amount of ultraviolet rays as ever, the ultraviolet ray emission should be driven by a constant current source within the operable input voltage range. And also the heat dissipation is particularly important because of the long ultraviolet emission retention time due to the UV utilization characteristics. In addition, since human body protection is essential, the algorithm is configured to operate according to human body detection using distance sensor and Bluetooth. Three 365nm UV LEDs were used in series to emit ultraviolet UVA, operating at the constant current of 500mA with an efficiency of 87.5% and a power consumption of 6.006W. The ultraviolet radiation dose was measured at $5.35mW/cm^2$ at the distance of 10 cm when measured by the Lutron ultraviolet measuring instruments.

Evaluation of Hydroxyl radical Formation and Energy Distribution in Photolysis Reactor (광반응 반응기 내부의 에너지 분포와 라디칼 생성에 대한 연구)

  • Nam, Sang-Geon;Hwang, An-Na;Cho, Sang-Hyun;Lim, Myung-Hee;Kim, Jee-Hyeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.179-183
    • /
    • 2011
  • In this study, photochemical effects (OH radical formation) in the photoreactor was investigated to analyze UV-C intensity distribution. In addition, The influence radius of the UV-C lamp was measured at various dose of $TiO_2$ (Degussa P-25). The photoreactor used in this study was bath type reactor which is made by acrylic and the UV-C lamp (SANKYO DENKI, wavelength : 254 nm, Diameter : 2.2 cm, Length : 18.5 cm) was used as photo source. The maximum electric power consumption of the UV lamp was 10.5 W. The OH radical formation by UV-C was measured by KI dosimetry methods. From the results, the effective OH radical formation was occurred under the following condition. The reasonable distance of UV-C lamp is within 13 cm and the intensity of UV-C lamp should be more than 0.367 mW/$cm^2$. Moreover, the concentration of catalyst affects on the influence radius of the UV lamp.

Photoprotective Effects of Silybum marianum Extract (흰무늬엉겅퀴 열매 추출물의 자외선에 대한 피부 보호 효과)

  • Kim, Daehyun;Bae, Woo Ri;Kim, Yun-Sun;Shin, Dong-won;Park, Sun-Gyoo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.209-216
    • /
    • 2019
  • Ultraviolet rays (UV) cause photoaging by inducing skin photodamages such as erythema and sunburn. Silymarin is a mixture of antioxidant polyphenols extracted from Silybum marianum fruit (S. m), which is known as milk thistle. It is known to protect skin tissues from UV treatment and antioxidant effects. In this study, we aimed to identify the photoprotective effects of S. m extract, which has silymarin in the epidermis layer of the skin. We found that the extract can function as a UV filter, so it can reduce DNA damage by UV treatment. Especially, we found that, in the stratum corneum, the extract can suppress the protein carbonylarion and DNA damages caused by suberythemal dose of UV treatment which does not induce erythema in the skin. UV treatment also increased protein carbonylation levels in the stratum corneum by oxidation, but it was prevented by applying the extract. The extract can absorb UV with minimal phototoxicity. Together, our study suggests that S. m extract can be used as a photo-protective ingredient to avoid photoaging of the skin.

Characteristics of Disinfection and Removal of 2-MIB Using Pulse UV Lamp (펄스 UV 램프를 이용한 미생물 소독 및 2-MIB 제거 특성)

  • Ahn, Young-Seog;Yang, Dong-Jin;Chae, Seon-Ha;Lim, Jae-Lim;Lee, Kyung-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • The characteristics of disinfection and organic removal were investigated with pulse UV lamp in this study. The intensity and emission wavelength of pulse UV Lamp were compared with low pressure UV lamp. The emission spectrum range of pulse UV lamp was between 200 and 400 nm while the emission spectrum of low pressure UV lamp was only single wavelength of 254nm. 3 Log inactivation rate of B. subtilis spore by pulse UV and low pressure UV irradiation was determined as $44.71mJ/cm^2$ and $57.7mJ/cm^2$, respectively. This results implied that wide range of emission spectrum is more effective compared to single wavelength emission at 254nm. 500ng/L of initial 2-MIB concentration was investigated on the removal efficiency by UV only and $UV/H_2O_2$ process. The removal efficiency of UV only process achieved approximately 80% at $8,600mJ/cm^2$ dose. 2-MIB removal rate of $UV/H_2O_2$ (5 mg/L $H_2O_2$) process was 25 times increased compared to UV only process. DOC removal efficiency for the water treatment plant effluent was examined. The removal efficiency of DOC by UV and $UV/H_2O_2$ was no more than 20%. Removal efficiency of THMFP(Trihalomethane Formation Potential), one of the chlorination disinfection by-products, is determined on the UV irradiation and $UV/H_2O_2$ process. Maximum removal efficiency of THMFP was approximately 23%. This result indicates that more stable chemical structures of NOM(Natural Organic Matter) than low molecule compounds such as 2-MIB, hydrogen peroxide and other pollutants affect low removal efficiency for UV photolysis. Consequently, pulse UV lamp is more efficient compared to low pressure lamp in terms of disinfection due to it's broad wavelength emission of UV. Additional effect of pulse UV is to take place the reactions of both direct photolysis to remove micro organics and disinfection simultaneously. It is also expected that hydrogen peroxide enable to enhance the oxidation efficiency on the pulse UV irradiation due to formation of OH radical.