• Title/Summary/Keyword: UV detection

Search Result 548, Processing Time 0.04 seconds

Validation and Uncertainty Evaluation of an Optimized Analytical Method Using HPLC Applied to Canthaxanthin, a Food Colorant (식품 색소 Canthaxanthin의 HPLC 최적 분석법 확인 및 타당성과 측정불확도 평가)

  • Suh, Hee-Jae;Kim, Kyung-Su;Hong, Mi-Na;Lee, Chan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.342-351
    • /
    • 2016
  • This study was carried out to develop an optimized analytical method using high-performance liquid chromatography (HPLC) applied to canthaxanthin, which is not yet designated as a food colorant in Korea, as well as to perform validation and uncertainty evaluation of this method. Official methods of AOAC, UK, and Japan with HPLC-UV detection were evaluated for the analysis of canthaxanthin by comparison of linearity, resolution, selectivity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision, recovery, inter-laboratory tests, and uncertainty measurement. The calibration curves showed high linearity with an $R_2$ value of over 0.999 for canthaxanthin standard solutions in all three official methods. The official method of Japan exhibited the best results in terms of resolution and selectivity, including the lowest LOD and LOQ. The average coefficients of variation were calculated as less than five of three institutes with a precision value less than 1, accuracy near 100%, and recovery ratio between $100{\pm}10%$. The expanded uncertainty for canthaxanthin was estimated to be $39.5{\pm}5.29mg/kg$ (95% confidence level, k=2), and the uncertainty of measurement was 13.4%. In this study, official methods of canthaxanthin were compared and the validities verified. The results will be further applied to establish an authorized analytical method for canthaxanthin in Korea.

Simultaneous Analysis of Cold Medicine Component by High-Performance Liquid Chromatography(HPLC) (고성능 액체크로마토그래피(HPLC)를 이용한 Cold Medicine 성분의 동시 분석)

  • Wonju Lee;Seung-Tae Choi;Keun-Sik Shin;Jin-Young Park;Jae-Ho Sim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.867-873
    • /
    • 2023
  • In this study, for the purpose of standardized quality control of a cold medicine, we simultaneous analyzed four main chemical components of a cold medicine: acetaminophen, caffeine, methyl paraben, and propyl paraben. The sample was subjected to quantitative analysis using high performance liquid chromatography (HPLC), after pretreatment of four components. The experiment was carried out by using Isocratic elution at wavelength of 270nm. Acetonitrile and water (H2O) were used as a mobile phase at a flow rate of 1.0mL/min in a commercial C18 reversed-phase column. A volume of 10uL cold medicine were injected into the column with column oven temperature at 35℃. As a result of the experiment, the values of Resolution were 4.983, 1.596, 5.519, and 1.678 respectively-well over Rs >1.5, which indicates that the separation of four components were efficient. In addition, value of symmetry factor of the components was 1.056, 1.069, 1.032, and 1.133 respectively, to show its symmetrical stability. The calibration curve of all four components exhibits good linearity with R2 >0.9995 to 0.9999. Furthermore, the limit of detection(LOD) were between 0.0118 to 1.5973 mg/mL, while the limit of quantification (LOQ) were between 0.0353 to 4.7919 ㎍/mL with the recovery rate of 79.6% ~ 120.5%. The results of this study showed an efficient quality evaluation of a simultaneous analysis method for cold medicine components.

Simultaneous HPLC Determination of Marker Compounds for the Standardization of Hedyotis diffusa (백운풀의 지표성분 설정 및 품질표준화를 위한 정량 분석법)

  • Bang, Han-Yeol;Yang, Eun-Ju;Kim, Jeong-Ah;Song, Kyung-Sik
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.1025-1031
    • /
    • 2013
  • From a 95% ethanolic extract of H. diffusa, four marker compounds (HD1~HD4) were isolated, which were relatively unique and exist in comparably high contents. The structures of marker compounds were identified as digitolutein (1), 2-hydroxy-3-methylanthraquinone (2), (E/Z)-6-O-p-coumaroyl scandoside methyl ester (4:1 mixture) (3), and (E/Z)-6-O-p-methoxycinnamoyl scandoside methyl ester (4:1 mixture) (4), respectively, on the basis of $^{13}C$ and $^1H$-NMR analyses. The calibration curves of marker compounds showed high linearity, as their correlation coefficient ($R^2$) were in the range of 0.9991~0.9999. In addition, the limit of detection (LOD) and the limit of quantification (LOQ) were $0.03{\sim}0.07{\mu}g/ml$ and $0.099{\sim}0.231{\mu}g/ml$, respectively. The intra-day/inter-day precision and accuracy were 0.23~2.00%/0.25~1.16% and 94.60~108.44%/94.73-110.23%, respectively. The optimal HPLC conditions for the simultaneous quantification of HD1~HD4 were as follows: stationary phase; Merck Chromolith RP-18e ($100{\times}4.6mm$, $5{\mu}m$), column temp.; room temperature, UV detection at 280 nm, flow rate; 2.0 ml/min, injection volume; $10{\mu}l$, mobile phase; start with the mixture of 80% solvent A ($H_2O$ containing 0.5% acetic acid) and 20% solvent B (methanol containing 0.5% acetic acid) and gradually decrease solvent A to 40% in 9 min., then retain this condition to 18 min. Under the HPLC condition, the four marker compounds 1~4 were successfully separated without any interference of other constituents. The results obtained in this study are expected to be helpful for the development of nutraceutics and natural medicines and for the quality control of this plant.

Development of an Analytical Method for Fluxapyroxad Determination in Agricultural Commodities by HPLC-UVD (HPLC-UVD를 이용한 농산물 중 Fluxapyroxad 잔류분석법 개발)

  • Kwon, Ji-Eun;Kim, HeeJung;Do, Jung-Ah;Park, Hyejin;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.3
    • /
    • pp.234-240
    • /
    • 2014
  • Fluxapyroxad is classified as carboxamide fungicide that inhibits succinate dehydrogenase in complex II of mitochondrial respiratory chain, which results in inhibition of mycelial growth within the fungus target species. This study was carried out to assure the safety of fluxapyroxad residues in agricultural products by developing an official analytical method. A new, reliable analytical method was developed and validated using High Performance liquid Chromatograph-UV/visible detector (HPLC-UVD) for the determination of fluxapyroxad residues. The fluxapyroxad residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient($R^2$) of fluxapyroxad standard solution was 0.9999. The method was validated using apple, pear, peanut, pepper, hulled rice, potato, and soybean spiked with fluxapyroxad at 0.05 and 0.5 mg/kg. Average recoveries were 80.6~114.0% with relative standard deviation less than 10%, and limit of detection (LOD) and limit of quantification (LOQ) were 0.01 and 0.05 mg/kg, respectively. All validation parameters were followed with Codex guideline (CAC/GL 40). LC-MS (Liquid Chromatograph-Mass Spectrometer) was also applied to confirm the analytical method. Base on these results, this method was found to be appropriate fluxapyroxad residue determination and can be used as the official method of analysis.

A Study of Current Status on Pesticide Residues in Commercial Dried Agricultural Products (서울시 유통 건조농산물 중의 농약잔류 실태 연구)

  • Kim, Bog-Soon;Park, Seoung-Gyu;Kim, Mi-Sun;Cho, Tae-Hee;Han, Chang-Ho;Jo, Han-Bin;Choi, Byung-Hyun;Kim, Sung-Dan
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.114-121
    • /
    • 2007
  • The purpose of this study was to investigate 253 kinds of pesticide residues in 58 commercial dried agricultural products in Seoul. The determinations of the pesticide residues were performed using multiresidue methods and were carried out by a gas chromatography-nitrogen phosphorus detector (GC-NPD), an electron capture detector ($GC-{\mu}ECD$), a mass spectrometry detector (GC-MSD) and high performance liquid chromatography-ultraviolet detector (HPLC-UV), and a fluorescence detector (HPLC-FLD). The pesticide residue detection rate in the commercial dried agricultural products was 24.1% (14 of 58 samples). Twelve pesticide residues without maximum residue limits (MRLs) were detected. In the vegetable groups, the frequency of pesticide residues was found to be in the increasing order of dried fruiting vegetables > dried leafy vegetables > dried stalk and stem vegetables. The pesticides used on dried red pepper in the dried fruiting vegetables were varied (7 kinds) and numerous (4 of 8 samples). The pesticide types detected in the commercial dried agricultural products were in the order of pyrethroid > organochloride > organophosphorus and insecticide > fungicide > herbicide ${\cdot}$ nematicide. The primary pyrethroid pesticide detected was cypermethrin. According to the producing areas of products, large numbers of pesticide residues were found in the order of Korea, China, North Korea, USA, and Vietnam.

Development of Analytical Methods of Spinosad in Agricultural Commodities by HPLC with UV Detector and Monitoring (HPLC-UVD를 이용한 농산물 중 스피노사드 분석법 개선 및 잔류실태 조사)

  • Kim, Hee-Yun;Choi, Sun-Hee;Chung, So-Young;Choi, Hee-Ju;Kim, Yong-Hoon;Cho, Min-Ja;Seo, Eun-Chae;Han, Kyoung-Jin;Choi, Jae-Chun;Park, Hee-Ok;Ha, Sang-Chul;Shin, Il-Shik;Eom, Ji-Yoon
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • The purpose of this study was to develop a methodology to detect spinosad which are difficult to analyze by multi-component simultaneous analysis of pesticide residues. We monitored spinosad due to the paucity of related information. The spinosad was determined using HPLC with UV detector at 250 nm. Correlation coefficient ($r^2$) for standard curve of spinosad A and D at standard concentration of 0.1-5.0 mg/kg were 0.999, respectively. Limit of quantitation (LOQ) of HPLC analysis was 0.005 mg/kg while limit of detection (LOD) was 0.001 mg/kg. Recovery experiments were conducted on five representative agricultural products to validate the analytical method. The recovery of proposed methods ranged from 74.9% to 104.0% and relative standard deviations were less than 10%. Spinosad residues were investigated in 16 commodities collected from 22 provinces. In this study, residues on all samples were not detected.

HPLC-MS/MS Detection and Sonodegradation of Bisphenol A in Water (HPLC-MS/MS를 이용한 Bisphenol A 분석 및 초음파에 의한 분해 특성 조사)

  • Park, Jong-Sung;Yoon, Yeo-Min;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.639-648
    • /
    • 2010
  • The optimal conditions for the analysis of BPA by HPLC-MS/MS was investigated and the ultrasound degradation capacity of the BPA, with the goal to establish the proper directions for analyzing infinitesimal quantities of BPA by HPLC-MS/MS was examined. The MDL and LOQ of BPA analyzed by HPLC-MS/MS were measured 0.13 nM and 1.3 nM respectively, its sensitivity about 620 and 32 times greater than HPLC-UV (MDL: 81.1 nM, LOQ: 811 nM) and FLD (MDL: 4.6 nM, LOQ: 46 nM). In other words, the new method enables the analysis of BPA with the accuracy up to one 1,180th of the amount specified in U.S. EPA guideline for drinking water. Degradation rate of BPA by ultrasound measured over 95% under 580 kHz and 1000 kHz frequency within 30 minutes of treatment, whereas the rate showed some decrease at 28 kHz frequency. At 580 kHz of ultrasound has proven to be the most effective among others at degradation rate and $k_1$ value, so we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. With the addition of 0.01 mM of $CCl_4$, BPA with the initial concentration of 1 ${\mu}M$ was degraded by more than 98% within 30 minutes, the $k_1$ value measured 5 minutes and 30 minutes into the experiment both showed increases by 1.4 and 1.1 times, respectively, compared with BPA without $CCl_4$. It is also found that the main degradation mechanism of BPA by ultrasound is oxidization process by OH radical, based on the fact that the addition of 10 mM of t-BuOH decreased the rate of BPA degradation by around 60%. However, 33% of BPA degradation rate obtained with the addition of t-BuOH implies further degradation done by pyrolysis or other sorts of radical beside OH radical.

Analytical Methods of Hydroxyl Radical Produced by TiO2 Photo-catalytic Oxidation (TiO2 광촉매 산화 반응에서 생성된 수산기 라디칼 분석 방법)

  • Kim, Seong Hee;Lee, Sang-Woo;Kim, Jeong Jin;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2015
  • The performance of $TiO_2$ photo-catalytic oxidation process is significantly dependent on the amount of hydroxyl radicals produced during the process, and it is an essential prerequisite to quantify its production. However, precise and accurate methods for quantification of hydroxyl radicals have not been developed so far. For this reason, this study was initiated to compare existing methods for analysis of hydroxyl radicals produced by $TiO_2$ photo-catalytic oxidation and to propose a new method to overcome the limitation of established methods. To simulate $TiO_2$ photo-catalytic oxidation process, Degussa P25 which has been widely used as a standard $TiO_2$ photo-catalyst was used with the dose of 0.05 g/L. The light source of process was UVC mercury low-pressure lamp (11 W, $2,975mW/cm^2$). The results indicate that both potassium iodide (KI)/UV-vis spectrometer and terephthalic acid (TPA)/fluorescence spectrometer methods could be applied to qualitatively measure hydroxyl radicals via detection of triiodide ion ($I_3{^-}$) and 2-hydroxyterephthalic acid which are produced by reactions of iodine ion ($I^-$) and TPA with hydroxyl radicals, respectively. However, it was possible to quantitatively measure hydroxyl radicals using TPA method coupled with high-performance liquid chromatograph (HPLC). The analytical results using TPA/HPLC method show that hydroxyl radical of 0.013 M was produced after 8 hours operation of photo-catalytic oxidation under specific experimental conditions of this study. The proposed method is expected to contribute to precise the evaluation of the performance of photo-catalytic oxidation process.

Quantitative determination of inosine 5'-monophosphate dehydrogenase activity in human peripheral blood mononuclear cells by ion-pair reversed-phase high-performance liquid chromatography (이온쌍 역상 HPLC를 이용한 인체 말초혈액단핵구에서 이노신 5'-일인산 탈수소효소 활성의 정량적 측정)

  • Shin, Hye-Jin;Kwon, Soon-Ho;Park, Ji-Myeong;Kwon, Soon-Hyo;Lee, Kyoung-Ryul;Kim, Young-Jin;Lee, Sang-Hoo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.531-536
    • /
    • 2010
  • A quantitative analytical method has been established for the measurement of inosine 5'-monophosphate dehydrogenase (IMPDH) activity in human peripheral blood mononuclear cells (PBMCs) by ion-pair reversed-phase high performance liquid chromatography equipped with ultraviolet detection (HPLC/UV). IMPDH is a ${\beta}$-nicotinamide adenine dinucleotide hydrate (NAD+)-dependent dehydrogenase in which the enzyme converts inosine 5'-monophosphate (IMP) into xanthosine 5'-monophosphate (XMP). Its activity was measured by quantifying a HPLC chromatogram corresponding to XMP produced during the incubation of lysed PBMCs with IMP as a substrate and $NAD^+$ as a coenzyme. XMP produced was detected at a wavelength of 260 nm. The mobile phase was composed of a mixture of 37 mM potassium dihydrogen phosphate containing 7 mM tetra-n-butylammonium hydrogen sulfate adjusted to pH 5.5 and methanol (85:15, v/v) with a flow rate of 1 mL/min. The calibration curve was linear ($r^2$=0.999999) in the range of $0.2-50.0\;{\mu}M$ and the limit of quantification (LOQ) was $0.2\;{\mu}M$. The intra- and inter-day precisions were between 0.88-1.47% and 0.85-5.24%, respectively. The intra- and inter-day accuracies were between 98.74-99.99% and 99.95-101.65%, respectively. IMPDH activity in 11 Korean healthy volunteers ranged from 18.29 to 36.60 nmol/h/mg protein (mean = $27.70{\pm}6.28\;nmol/h/mg$ protein).

Analytical Method for Sodium Polyacrylate in Processed Food Products by Using Size-exclusion Chromatography (Size-exclusion Chromatography를 활용한 가공식품 중 폴리아크릴산나트륨 분석법 확립)

  • Jeong, Eun-Jeong;Choi, Yoo-Jeong;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, MeeKyung;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • An analytical method of sodium polyacrylate in processed food products was developed and monitored by using size-exclusion chromatography. GF-7M HQ column and UV/VIS detector were selected based on peak shape and linearity. Flow rate, column oven temperature, and mobile phase were selected as 0.6 mL/min, $45^{\circ}C$, and 50 mM sodium phosphate buffer of pH 9.0, respectively. Samples for analysis of sodium polyacrylate were extracted with 50 mM sodium phosphate buffer of pH 7.0 for 3 hr at $20^{\circ}C$ and 150 rpm. Analytical method validation revealed proper selectivity and calibration curve was selected in the range of 50-500 mg/L, and correlation coefficient of calibration curve was more than 0.9985. Limit of detection of sodium polyacrylate was 10.95 mg/kg and limit of quantification was 33.19 mg/kg. Accuracy and coefficient of variation for sodium polyacrylate analysis was 99.6-127.6%, 3.0-8.3% for intra-day and 94.3-121.9%, 1.3-2.6% for inter-day, respectively. Sodium polyacrylate was detected in 40 samples among monitored 125 processed food products. Detected contents were less than 0.2%, limited by the Food Additives Code. Results suggest the established size-exclusion chromatography method could be used to analyze sodium polyacrylate in processed food products.