• Title/Summary/Keyword: UV detection

Search Result 548, Processing Time 0.044 seconds

Determination of Trace Iodide in Sodium Bisulfite Aqueous Solution by Ion Chromatography with UV Detection (이온크로마토그래피를 이용한 Sodium bisulfite 수용액 중의 미량 요오드 정량)

  • Park, Yang-Soon;Kim, Do-Yang;Choi, Kwang-Soon;Park, Soon-Dal;Han, Sun-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • The iodide was recovered from a simulated spent fuel to the sodium bisulfite aqueous solution. It was discussed that the trace iodide (below 1 ppm) was determined without the matrix effect of 0.1 M sodium bisulfite and 1 mM $HNO_3$ in aqueous solution by ion chromatography with UV detection. AS4A-SC (DIONEX) column and UV-absorption spectrophotometer were used. The UV-absorption spectra of sodium bisulfite, nitric acid and iodide were obtained, and then 230 nm was selected as an absorption wavelength for iodide determination. 0.1 M NaCl eluent was optimum condition. In this condition the calibration curve of iodide was obtained on the range of about 0-1,000 ppb. The linear coefficient was 0.99993 and the detection limit was 5 ppb. The relative standard deviation was 1.26%.

  • PDF

Impurity Profiling and Quantification of Sudan III Dyes by HPLC-selective UV Detection

  • Yang, Ki Ryeol;Hong, Ji Yeon;Yoon, Soo Hwan;Hong, Jongki
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.765-769
    • /
    • 2014
  • An analytical methodology was developed for qualitative and quantitative impurity profiling of the coloring agent Sudan III by high-performance liquid chromatography (HPLC)-diode array detection (DAD). The impurities in commercial Sudan III were characterized by comparison of their retention times and UV spectra with those of authentic standards. Four impurities regulated by International Committees in Sudan III were quantified by HPLC-selective UV detection. The impurities in Sudan dye were successfully separated on a reversed phase C18-column within 25 min and sensitively detected by UV spectrometry at two selective wavelengths. Method validation was conducted to determine linearity, precision, accuracy, and limit of quantification (LOQ). The linear dynamic range extended from 0.002 to 4.0%, with a correlation coefficient (R2) greater than 0.995. The LOQs of the impurities ranged from 8.04 to $54.29{\mu}g/mg$. Based on the established method, the levels of regulated impurities in five commercial Sudan III dyes were determined.

MEASUREMENT OF PESTICIDES RESIDUES USING SPECTROSCOPY ON AGRICULTURAL PRODUCTS

  • Kim, Y. W.;S. H. Noh
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.525-532
    • /
    • 2000
  • A new spectroscopic method for pesticide residues detection on agricultural products was developed. The general determination methods are high performance liquid chromatography (HPLC), gas chromatography (GC) or GC-mass spectrometry. They have provided relatively good detection limit and accuracy with complicated and time-consuming (5hrs above) procedures. In addition freshness is very important for evaluating qualities of agricultural products. This requires a simple and fast method for detection of pesticides. Reflectance, transmittance and fluorescence spectrometry of pesticides were tested using UV range because most of pesticides contain conjugation band in the molecular structures. Fluorescence spectrometry showed better sensitive to detect pesticide residues than did reflectance and transmittance spectrometry. Intensity and shape of fluorescence spectra showed different patterns with different structures of pesticides. Detection limit for fluorescence spectrometry was 0.1 ppm to 10 ppm depending on the structures of pesticides. Application of fluorescence spectrometry appears to be an easy method for detection of pesticide residues on agricultural products.

  • PDF

SnO2-Embedded Transparent UV Photodetector (SnO2 기반의 투명 UV 광 검출기)

  • Lee, Gyeong-Nam;Park, Wang-Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.806-811
    • /
    • 2017
  • An all-transparent ultraviolet (UV) photodetector was fabricated by structuring $p-NiO/n-SnO_2/ITO$ on a glass substrate. $SnO_2$ is an important semiconductor material because of its large bandgap, high electron mobility, high transmittance (as high as 80% in the visible range), and high stability under UV light. For these reasons, $SnO_2$ is suitable for a range of applications that involve UV light. In order to form a highly transparent p-n junction for UV detection, $SnO_2$ was deposited onto a device containing NiO as a high-transparent metal conductive oxide for UV detection. We demonstrated that all-transparent UV photodetectors based on $SnO_2$ could provide a definitive photocurrent density of $4nA\;cm^{-2}$ at 0 V under UV light (365 nm) and a low saturation current density of $2.02nA{\times}cm^{-2}$. The device under UV light displayed fast photoresponse with times of 31.69 ms (rise-time) and 35.12 ms (fall-time) and a remarkable photoresponse ratio of 69.37. We analyzed the optical and electrical properties of the $NiO/SnO_2$ device. We demonstrated that the excellent properties of $SnO_2$ are valuable in transparent photoelectric device applications, which can suggest various routes for improving the performance of such devices.

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.

Analysis of Anions by Indirect Photometric Detection (I) (간접 분광 검출법에 의한 음이온의 분석(I))

  • Park, Man-Ki;Kim, Bak-Kwang;Park, Jeong-Hill;Kim, Kyoung-Ho;Lee, Mi-Yung;Jung, Jae-Eun
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.215-218
    • /
    • 1990
  • An ion chromatographic method based on indirect photometric detection of UV transparent anions was developed. Separation of anion was accomplished on strong anion exchange column (Waters SAX) using UV detector at 254 nm. Among examined UV-active additives (Dns-H, Dns-glu, Dnsser, Dns-val), Dns-glu showed the highest sensitivity. Studies on the effects of the pH and ionic strength of eluent revealed that the increase of pH and ionic strength of the eluent decreased capacity factor. The best eluent for the separation of acetate, fluoride, chloride, nitrate and bromide was $1\;{\times}\;10^{-4}M$ Dns-glu in 5 mM phosphate buffer (pH 6.30). The detection limit of chloride ion was 2.1 ng in this condition.

  • PDF

Cholesteric Liquid Crystals as Multi-Purpose Sensor Materials

  • Lisetski, L.N.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.27-30
    • /
    • 2005
  • New possibilities are discussed for cholesteric liquid crystals (CLC) as sensor materials for detection of ionizing radiation, biologically active UV radiation, and the presence of hazardous vapors in atmosphere. A distinguishing property of CLC-based detectors is their 'bioequivalence', i.e., mechanisms of their response to external factors essentially imitate the corresponding mechanisms of biological tissues. Such detectors can ensure sufficiently high sensitivity to make feasible their use as alarm indicators or in biophysical studies. Specific examples ate given of sensor compositions and their response characteristics.

DETERMINATION OF SIMVASTATIN IN HUMAN PLASMA BY COLUMN SWITCHING HPLC WITH UV DETECTION

  • Ban, Eun-Mi;Kim, Bae-Chan;Park, Tae-Hwan;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.281.1-281.1
    • /
    • 2003
  • Purpose. The purpose of this study was to develop and validate sensitive and specific analytical method for determinination of simvastatin in human plasma by the column-switching high-performance liquid chromatography (HPLC) system with UV detection. Methods. Simvastatin and internal standard were extracted into diethyl ether from plasma. (omitted)

  • PDF

Comparison of UV images and Measurement of the Corona Discharge from Insulators using the UV Sensor (UV 센서를 이용한 절연애자의 코로나 방전 측정 및 자외선 이미지의 비교)

  • Kim, Young-Seok;Choi, Myeong-Il;Kim, Chong-Min;Bang, Sun-Bae;Shong, Kil-Mok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.899-904
    • /
    • 2011
  • Inspections and diagnoses of corona discharge are important in order to prevent electrical faults of external insulation in power systems. This paper studies a measurement of ultra-violet rays(UV) strength of corona discharges on insulators using a UV sensor with an optic lens. The data has been compared with the images of a UV camera. The UV sensor estimated that DC voltage needed to be set at 700V for accurate data analysis of the properties of UV detected during corona discharge. UV was generated at 60kV when the corona discharge occurred. UV strength and images of UV increased at a high voltage. The image area of the UV using a UV camera and the detection of UV using a UV sensor have shown, that the polymer insulator mounted on a live part must be checked when the applied voltage on the good polymer insulator is greater than 37.5% of its breakdown voltage.

Ultra Violet (UV) Sensor based on Oxide Ceramic Materials (산화물 세라믹 재료 기반 자외선 센서)

  • Yu, Hak Ki
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • Research on ultraviolet (UV) light detection has attracted considerable attention from scientific researchers in related fields. It can be said that it is a very important time to accurately monitor the UV irradiation amount according to the wavelength region in real time. The oxide is very diverse in its kind and has the advantage of being able to efficiently control the band gap through band gap engineering. In addition, it is very stable in response to heat and atmospheric oxygen when UV is absorbed. Also, there is a known method that can effectively manufacture oxide nanoparticles and nanorods through various synthesis methods, and researches for improving the sensitivity of UV sensors have been carried out using this method. In this paper, we introduce the materials that can be used as UV sensors among various wide band oxide materials, and review the results of researches of various UV sensors using nano materials.