• 제목/요약/키워드: UV Imprint

검색결과 56건 처리시간 0.039초

UV 나노임프린트를 위한 UV 경화성 수지 개발 및 경화 특성 평가 (Development of UV curable polymer and curing characteristics estimation for UV nanoimprint)

  • 이진우;이승재;이응숙;정준호;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1220-1223
    • /
    • 2003
  • The UV nanoimprint technology uses the UV light as the energy source. Because the imprint process is carried out in room temperature and low pressure, this technology has its own merits compared to the thermal nanoimprint. However, in UV nanoimprint technology, a resin which has low viscosity is essential for the improvement of accuracy. In this research, a resin (named as IMS01) which has relatively low viscosity was developed. And a measurement system was developed in order to measure the degree of cure of the resin. The measurement system which is composed of FT-IR, UV light source and optical guide can measure the degree of cure in real time. From the experimental results, it was found that the IMS01 is cured more rapidly than existing resin (PAK01).

  • PDF

나노 임프린트 공정을 이용한 결정형 실리콘 태양전지 효율 향상 기술 (Technology for Efficiency Enhancement of Crystalline Si Solar Cell using Nano Imprint Process)

  • 조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.30-35
    • /
    • 2013
  • In order to increase cell efficiency in crystalline silicon solar cell, reduction of light reflection is one of the essential problem. Until now silicon wafer was textured by wet etching process which has random patterns along crystal orientation. In this study, high aspect ratio patterns are manufactured by nano imprint process and reflectance could be minimized under 1%. After that, screen printed solar cell was fabricated on the textured wafer and I-V characteristics was measured by solar simulator. Consequently cell efficiency of solar cell fabricated using the wafer textured by nano imprint process increased 1.15% than reference solar cell textured by wet etching. Internal quantum efficiency was increased in the range of IR wave length but decreased in the UV wavelength. In spite of improved result, optimization between nano imprinted pattern and solar cell process should be followed.

임프린트를 위한 자기조립단분자 이형코팅 (Self-assembled moolayers as anti-stiction coating for imprint)

  • 이상문;나승현;조재춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.219-219
    • /
    • 2007
  • Ni stamper위에 100nm의 Si 코팅후 자기조립 단문자막(SAM)을 액상 코팅방식으로 형성 하였고, 내구성 및 열적 안정성을 검증하기 위해 반복적인 이형 및 압력인가test가 실시하였다. 20 회 이상의 이형실험을 통해 열적, 기계적 안정성을 확인하고, 접촉각 측정을 통해 이형특성의 안정성도 고찰하였다. 이를 Imprint공법을 적용 fine pattern의 구조물을 얻을수 있었다. SAM코팅은 TRICHLOROSILANE을 사용하였으며 Hexane과 1000:1의 비율로 섞어서 stirrer에서 mixing하는 방식을 사용했으며, UV-ozone처리를 통한 이형성 제거 효과도 관찰하였다.

  • PDF

Large area imprint process using isostatic pressure

  • 이상문;문진석;곽정복;나승현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.209-209
    • /
    • 2007
  • Ni stamper위에 100nm의 Si 코팅후 자기조립 단분자막(SAM)을 액상 코팅방식으로 형성 하였고, 내구성 및 열적 안정성을 검증하기 위해 반복적인 이형 및 압력인가 test가 실시하였다. 20회 이상의 이형실험을 통해 열적, 기계적 안정성을 확인하고, 접촉각 측정을 통해 이형특성의 안정성도 고찰하였다. 이를 Imprint공법을 적용 fine pattern의 구조물을 얻을 수 있었다. SAM코팅은 TRICHLOROSILANE을 사용하였으며 Hexane과 1000:1의 비율로 섞어서 stirrer에서 mixing하는 방식을 사용했으며, UV-ozone처리를 통한 이형성 제거 효과도 관찰하였다.

  • PDF

Elementwise Patterned Stamp와 부가압력을 이용한 UV 나노임프린트 리소그래피 (UV Nanoimprint Lithography using an Elementwise Patterned Stamp and Pressurized Air)

  • 손현기;정준호;심영석;김기돈;이응숙
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.672-675
    • /
    • 2005
  • To imprint 70-nm wide line-patterns, we used a newly developed ultraviolet nanoimprint lithography (UV-NIL) process in which an elementwise patterned stamp (EPS), a large-area stamp, and pressurized air are used to imprint a wafer in a single step. For a single-step UV-NIL of a 4' wafer, we fabricated two identical $5'\times5'\times0.09'(W{\times}L{\times}H)$ quartz EPSs, except that one is with nanopatterns and the other without nanopatterns. Both of them consist of 16 small-area stamps, called elements, each of which is $10\;mm\;\times\;10\;mm$. UV-curable low-viscosity resin droplets were dispensed directly on each element of the EPSs. The volume and viscosity of each droplet are 3.7 nl and 7 cps. Droplets were dispensed in such a way that no air entrapment between elements and wafer occurs. When the droplets were fully pressed between ESP and wafer, some incompletely filled elements were observed because of the topology mismatch between EPS and wafer. To complete those incomplete fillings, pressurized air of 2 bar was applied to the bottom of the wafer for 2 min. Experimental results have shown that nanopatterns of the EPS were successfully transferred to the resin layer on the wafer.

  • PDF

다중양각스탬프를 사용하는 UV 나노임프린트 리소그래피공정에서 웨이퍼 미소변형의 영향 (The effect of micro/nano-scale wafer deformation on UV-nanoimprint lithography using an elementwise patterned stamp)

  • 정준호;심영석;최대근;김기돈;신영재;이응숙;손현기;방영매;이상찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1119-1122
    • /
    • 2004
  • In the UV-NIL process using an elementwise patterned stamp (EPS), which includes channels formed to separate each element with patterns, low-viscosity resin droplets with a nano-liter volume are dispensed on all elements of the EPS. Following pressing of the EPS, the EPS is illuminated with UV light to cure the resin; and then the EPS is separated from several thin patterned elements on a wafer. Experiments on UV-NIL were performed on an EVG620-NIL. 50 - 70 nm features of the EPS were successfully transferred to 4 in. wafers. Especially, the wafer deformation during imprint was analyzed using the finite element method (FEM) in order to study the effect of the wafer deformation on the UV-NIL using EPS.

  • PDF

Controlled interfacial energy for UV-imprinting using resin adhesion to substrates

  • Kim, Jin-Ook;Nam, Yeon-Heui;Chae, G.S.;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1622-1624
    • /
    • 2006
  • We introduce a modified UV-imprint lithography, a resin transfer from the template to the substrate. We analyzed this method by considering the surface and interfacial free energies of the template-resinsubstrate system. This technique is purely fast and applicable to large area patterning.

  • PDF