Inspections and diagnoses of corona discharge are important in order to prevent electrical faults of external insulation in power systems. This paper studies a measurement of ultra-violet rays(UV) strength of corona discharges on insulators using a UV sensor with an optic lens. The data has been compared with the images of a UV camera. The UV sensor estimated that DC voltage needed to be set at 700V for accurate data analysis of the properties of UV detected during corona discharge. UV was generated at 60kV when the corona discharge occurred. UV strength and images of UV increased at a high voltage. The image area of the UV using a UV camera and the detection of UV using a UV sensor have shown, that the polymer insulator mounted on a live part must be checked when the applied voltage on the good polymer insulator is greater than 37.5% of its breakdown voltage.
In this paper, it's described the UV detected images on polymer insulators using UV camera. The patterns of UV detected images are classified into 3 types such as jellyfish(J), amoeba(A), sunflower(S). J type is detected by high electric field in air A type is detected by early surface discharge. And, S type is detected by the serious problem in surface of insulator.
In this study, we apply conditional Generative Adversarial Network, which is one of the deep learning method, to the image-to-image translation from solar magentograms to solar UV and EUV images. For this, we train a model using pairs of SDO/AIA 9 wavelength UV and EUV images and their corresponding SDO/HMI line-of-sight magnetograms from 2011 to 2017 except August and September each year. We evaluate the model by comparing pairs of SDO/AIA images and corresponding generated ones in August and September. Our results from this study are as follows. First, we successfully generate SDO/AIA like solar UV and EUV images from SDO/HMI magnetograms. Second, our model has pixel-to-pixel correlation coefficients (CC) higher than 0.8 except 171. Third, our model slightly underestimates the pixel values in the view of Relative Error (RE), but the values are quite small. Fourth, considering CC and RE together, 1600 and 1700 photospheric UV line images, which have quite similar structures to the corresponding magnetogram, have the best results compared to other lines. This methodology can be applicable to many scientific fields that use several different filter images.
We translate Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) ultraviolet (UV) multi-channel images into another UV single-channel image using a deep learning algorithm based on conditional generative adversarial networks (cGANs). The base input channel, which has the highest correlation coefficient (CC) between UV channels of AIA, is 193 Å. To complement this channel, we choose two channels, 1600 and 304 Å, which represent upper photosphere and chromosphere, respectively. Input channels for three models are single (193 Å), dual (193+1600 Å), and triple (193+1600+304 Å), respectively. Quantitative comparisons are made for test data sets. Main results from this study are as follows. First, the single model successfully produce other coronal channel images but less successful for chromospheric channel (304 Å) and much less successful for two photospheric channels (1600 and 1700 Å). Second, the dual model shows a noticeable improvement of the CC between the model outputs and Ground truths for 1700 Å. Third, the triple model can generate all other channel images with relatively high CCs larger than 0.89. Our results show a possibility that if three channels from photosphere, chromosphere, and corona are selected, other multi-channel images could be generated by deep learning. We expect that this investigation will be a complementary tool to choose a few UV channels for future solar small and/or deep space missions.
An understanding of the ultraviolet (UV) properties of nearby galaxies is essential for interpreting images of high redshift systems. In this respect, the prediction of optical-band morphologies at high redshifts requires UV images of local galaxies with various morphologies. We present the simulated optical images of galaxies at high redshifts using diverse and high-quality UV images of nearby galaxies obtained through the Galaxy Evolution Explorer (GALEX). We measured CAS (concentration, asymmetry, clumpiness) as well as Gini/M20 parameters of galaxies at near-ultraviolet (NUV) and simulated optical images to quantify effects of redshift on the appearance of distant stellar systems. We also discuss the change of morphological parameters with redshift.
본 연구는 제작된 OLED 소자에 UV의 조사시간에 따른 PL intensity 의 감소와 UV power에 따른 PL degradation 변화에 따라 적절한 UV의 조사조건을 찾아 OLEO 소자의 사진이미지를 구현하고자 하였다. 이러한 조건들로부터 얻어진 OLED 소자의 사진이미지 구현을 통하여 그동안 문제점으로만 여겨졌던 UV에 의한 PL degradation 현상이 문제점만이 아닌 다른 하나의 장점으로 발전되어 다른 분야에서 적용될 수 있다고 기대해본다.
In this paper, the UV corona camera was developed using the solar blind and Multi Channel Plate(MCP) technology for the target localization of UV camera. UV camera developed a $6.4^{\circ}{\times}4.8^{\circ}$ of the field of view as a conventional camera to diagnose a wide range of slightly enlarged, and power equipment to measure the distance between the camera and the distance meter has been attached. The UV camera was developed and measured using a UV image, as applied voltage increased ultraviolet images of the phenomenon could be obtained. And we investigated properties of UV corona image on insulator in salt water environments. From the results, the breakdown voltage was decreased and UV images were taken at low voltages and the UV image is rapidly increased with increasing High voltage.
In this paper, there analyzed the UV behavior and detection images due to corona discharge of insulators at 22.9kV. As the results, the shapes of UV detection images are jellyfish, sunflower, and amoeba type. Generally, the jellyfish and sunflower type appeared in air discharge. In surface discharge, Amoeba is generated. Also, there are classified 8 patterns such as sunflower A or B, jellyfish A or B, amoeba A, B, C, D. This method of the facilities assessment has an immediate effect in the field.
보석용 다이아몬드의 합성, 처리기술의 발달로 천연 유색다이아몬드를 신속하고, 경제적이고, 재현성있게 감별할 필요가 커지고 있다. 천연다이아몬드의 감별을 위해 UV광원에 의한 다이아몬드의 형광 이미지 분석과 X-ray Lang 분석을 통하여 4개의 천연 유색다이아몬드와 1개의 합성 유색다이아몬드를 분석하여 보았다. 천연다이아몬드가 UV 형광이미지와 X-선 Lang분석에 대해 상대적으로 균일한 이미지를 보임에 비해 합성석은 국부적으로 균일한 이미지를 보여 효과적인 감별이 가능하였다. 특히 X-선 Lang 이미지 분석이 천연 유색다이아몬드의 감별에 더 높은 분해능으로 효과적인 감별이 가능하였다.
본 연구에서는 22.9[kV] 애자의 표면오염에 의한 자외선 영상과 거동을 통해 자외선 이미지 형태 판단법을 정의하였다. 코로나 방전에 의해 나타나는 자외선 영상은 아메바, 젤리피쉬, 썬플라워 형태 등 3가지로 나누어지며, 세부적으로는 8개의 진행 메커니즘으로 구분하였다. 전력설비가 설치된 현장에서는 즉각적으로 이 판단 방법으로 전력 설비의 열화된 부분을 찾을 수 있다. 이는 신뢰성 있는 데이터를 통해 전력설비의 열화를 판단하는 기준에 활용이 가능하다. 향후 현장진단에 적합한 기술로서의 연구가 활용될 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.