• Title/Summary/Keyword: UV Energy

Search Result 1,130, Processing Time 0.026 seconds

Determination of Trace Iodide in Sodium Bisulfite Aqueous Solution by Ion Chromatography with UV Detection (이온크로마토그래피를 이용한 Sodium bisulfite 수용액 중의 미량 요오드 정량)

  • Park, Yang-Soon;Kim, Do-Yang;Choi, Kwang-Soon;Park, Soon-Dal;Han, Sun-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.304-308
    • /
    • 2000
  • The iodide was recovered from a simulated spent fuel to the sodium bisulfite aqueous solution. It was discussed that the trace iodide (below 1 ppm) was determined without the matrix effect of 0.1 M sodium bisulfite and 1 mM $HNO_3$ in aqueous solution by ion chromatography with UV detection. AS4A-SC (DIONEX) column and UV-absorption spectrophotometer were used. The UV-absorption spectra of sodium bisulfite, nitric acid and iodide were obtained, and then 230 nm was selected as an absorption wavelength for iodide determination. 0.1 M NaCl eluent was optimum condition. In this condition the calibration curve of iodide was obtained on the range of about 0-1,000 ppb. The linear coefficient was 0.99993 and the detection limit was 5 ppb. The relative standard deviation was 1.26%.

  • PDF

Fabrication of Red LED with Mn activated $CaAl_{12}O_{19}$ phosphors on InGaN UV bare chip (InGaN UV bare칩을 이용한 $CaAl_{12}O_{19}:Mn^{4+}$ 형광체의 적색 발광다이오드 제조)

  • Kang, Hyun-Goo;Park, Joung-Kyu;Kim, Chang-Hae;Choi, Seung-Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.87-92
    • /
    • 2007
  • A $CaAl_{12}O_{19}:Mn^{4+}$ red phosphor showed the highest emission intensity at a concentration of 0.02mole $Mn^{4+}$ and the high crystallinity and luminescent properties were obtained at $1600^{\circ}C$ firing temperature for 3hr. The synthesized phosphor showed a broad emission band at 658nm wavelength. Red light-emitting diodes(LEDs) were fabricated through the integration of on InGaN UV bare chip and a 1:3 ratio of $CaAl_{12}O_{19}:Mn^{4+}$ and epoxy resin in a single package. This coated LED can be applicable to make White LEDs under excitation energy of UV LED.

  • PDF

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.

WTP UV Disinfection System (국내하수처리장 자외선소독조 운영실태 및 기술동향)

  • Lee, J.Y.;Kim, Y.T.;Lee, T.J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.126-132
    • /
    • 2005
  • UV disinfection system allows the disinfection of municipal and industrial water and wastewater without the use of expensive chlorination and dechlorination techniques, labor intensive equipments In traditional ultraviolet systems the UV lamps are seperated from water by quartz sleeves. quartz is one of. the few materials that is virtually transparent to UV light, the UV lamp is placed inside the Quartz sleeve. UV light from the lamp is passed through the quartz and into the water, thereby providing disinfection. In fluoropolymer tube-used non-contact UV systems, the water flows through fluoropolymer plastic tubes. banks of UV lamps surround these tubes such that each tube gets exposed to ultra violet light from all sides. in non-contact design the lamps operates at almost constant temperature. this design is extremly efficient in the utilization of UV energy and superior to conventional contact- systems.

  • PDF

One-side Water-repellent Finish of PET Fabrics using UV/Ozone (UV/Ozone 조사에 의한 PET 직물의 편면 발수가공)

  • Kim, Su-Jin;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.100-106
    • /
    • 2011
  • UV-curable water-repellent finish was carried out to impart one-side repellency to the PET fabrics using a formulation of a UV-active fluorocarbon agent and a water soluble photoinitiator. The aqueous formulation was padded on the PET fabrics and it was subsequently UV-cured. The unirradiated side of the cured fabrics was made to wetteable to water by the prolonged UV/ozone irradiation. The influence of photoinitiator concentration, agent concentration and UV energy for photodegradation on the performance of the finished fabrics were investigated. The difference in the functional property of front and back sides was examined by measuring water repellency at each side of the treated fabrics, which resulted in four rating difference between two-side. The UV-cured and photodegraded PET surfaces were characterized by ATR, ESCA and FE-SEM.

SHRINKAGE OF VITREOUS BODY CAUSED BY HYDROXYL RADICAL

  • Park, Myoung-Joo;Shimada, Takashi;Matuo, Yoichirou;Akiyama, Yoko;Izumi, Yoshinobu;Nishijima, Shigehiro
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.4
    • /
    • pp.143-150
    • /
    • 2008
  • In this study, we examined the effect of hydroxyl radical generated by $\gamma$-ray and UV irradiation on shrinkage of vitreous body. Change in gel ratio of vitreous body and change in the properties of its components (collagen, sodium hyaluronate) were analyzed. By comparing these results, the amount of hydroxyl radical, which induces the considerable shrinkage of vitreous body, was evaluated from theoretical calculation based on experimental condition and some reported kinetic parameters. It was concluded that the integrated amount of hydroxyl radical required to liquefy half of the vitreous body (Vitreous body gel ratio = 50%) was estimated as $140\;{\mu}molg^{-1}$ from $\gamma$-ray irradiation experiment. Also, from UV irradiation experiment result, it was confirmed that the effect of hydroxyl radical is larger than that of other reactive species. The causes of shrinkage of vitreous body are supposed as follows, 1) decrease in viscosity by cleavage of glycoside bond in sodium hyaluronate, 2) leaching of collagen from vitreous body and 3) leaching of crosslinked products and scission products of collagen.

Effect of UV Irradiation and TiO2 Addition on the Ozonation of Pyruvic Acid (피루브산의 오존산화반응에 미치는 TiO2 첨가 및 UV 조사의 영향)

  • Lee, Cheal-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Ozonation was investigated for its ability to remove pyruvic acid in a laboratory-scale batch reactor under various experimental conditions, including UV irradiation, TiO2 addition, and variations in temperature. An ozone flow rate of 1.0 L min-1 and a concentration of 75±5 mg L-1 were maintained throughout the experiment, and pH, COD, and TOC were measured at 10 min intervals during a 60 min reaction. Our results confirmed that the combination of UV irradiation and photocatalytic TiO2 in the ozonation reaction improved the removal efficiency of both COD and TOC in aqueous solution at 20℃. Pseudo first-order rate constants and activation energies were quantified based on the COD and TOC measurements. We observed that the O3/UV, O3/UV/TiO2 system increased mineralization and reduced the activation energy (Ea) necessary for pyruvic acid decomposition.

Decomposition of Organophosphorous Compounds with Ultraviolet Energy(UV-C) (자외선에너지(UV-C)를 이용한 유기인계 화합물의 분해)

  • Kim, Jong-Hyang;Min, Byoung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • Two organophosphorous insecticides, Dichlorovos and Chloropyrifos were degraded in the presence of UV irradiation, UV irradiation with $TiO_2$ powder and UV irradiation with sea sand using low pressure mercury lamp. The identification of these compounds was carried out by gas chromatograph with a nitrogen-phosphorous detector, Total Organic Carbon and Ion Chromatograph, respectively. Both dichlorvos and chloropyrifos, UV irradiation with sea sand were more degradable than UV irradiation and UV irradiation with $TiO_2$ powder. The final products were $Cl^-$ in Dichlorvos, $Cl^-$ $SO_4{^{2-}}$ in Chloropyrifos, respectively.

  • PDF

Analysis of Disinfection Performance of UV LEDs for a Phytoplankton (식물성 플랑크톤에 대한 UV LED의 살균성능 분석)

  • Kil, Gyung-Suk;Choi, Sung-Kuk;Park, Dae-Won;Kim, Sung-Wook;Cheon, Sang-Gyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.959-964
    • /
    • 2009
  • This paper dealt with the disinfection performance by Ultra-Violet Light Emitting Diode (UV LED) for a phytoplankton as a basic study for the development of a low-energy consumption ballast water treatment system. UV LEDs having peak wavelength of 255nm, 265nm and 280nm were used in the experiment. UV LED modules with driving circuit were fabricated, and optical and electrical characteristics of them were analyzed. The disinfection performance for phytoplankton depending on the UV wavelength was evaluated by comparing the number of phytoplankton before and after the UV treatments. The experimental result showed that the highest disinfection wavelength for the phytoplankton was 265nm.