• 제목/요약/키워드: UV Energy

검색결과 1,138건 처리시간 0.029초

UV/Ozone 조사에 의한 Poly(phenylene sulfide) 필름의 표면처리와 염색성 (Surface Treatment and Dyeability of Poly(phenylene sulfide) Films by UV/O3 Irradiation)

  • 장용준;장진호
    • 한국염색가공학회지
    • /
    • 제23권4호
    • /
    • pp.284-289
    • /
    • 2011
  • Poly(phenylene sulfide)(PPS) films were photooxidized under UV/ozone irradiation. The effect of UV energy on the surface properties of the UV-irradiation PPS films were investigated by the measurement of reflectance, surface roughness, and contact angle. Reflectance decreased at the wavelength of 400nm and the surface roughness increased with increased UV energy. The improvement in hydrophilicity with increased $O_{1s}/C_{1s}$ was caused by the introduction of hydrophilic $SO_2$ bond. Surface energy increased from 46.6 to $78.3mJ/m^2$ with increased UV energy up to $21.2J/cm^2$. Also zeta potential decreased with increased UV energy. The increased dyeability to cationic dyes may be due to the photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.he photochemically introduced anionic and dipolar dyeing sites on the PPS films surfaces.

자외선/오존 조사에 의한 Poly(butylene succinate) 필름의 광산화 (Photooxidation of Poly(butylene succinate) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.159-164
    • /
    • 2014
  • Biodegradable Poly(butylene succinate), PBS, was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PBS film were investigated by the measurement of reflectance, surface roughness, contact angles, chemical composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 380nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 106nm for the unirradiated sample to 221nm at the UV energy of $10.6J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C-O and C=O bonds. The surface energy of the PBS increased from $42.1mJ/m^2$ for the unirradiated PBS to $56.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The zeta potentials of the UV-irradiated PBS also decreased proportionally with increasing UV energy. The cationic dyeability of the PBS increased accordingly resulting from the improved affinity of the irradiated PBS surfaces containing photochemically introduced anionic and dipolar dyeing sites.

질산매질에서 UV 조사에 의한 옥살산 분해 (Decomposition of Oxalic Acid in Nitric Acid by UV Radiation)

  • 김응호;김영환;정동용;유재형
    • 공업화학
    • /
    • 제8권1호
    • /
    • pp.108-113
    • /
    • 1997
  • 본 연구에서는 질산매질에서 UV 광조사에 의한 옥살산 분해연구가 수행되었다. UV 광원은 $2537{\AA}$의 파장을 방출하는 수은램프가 사용되었다. UV 광조사에도 불구하고 옥살산 자체는 분해되지 않았다. 그러나 질산매질하에서 UV 광조사에 의해 옥살산은 쉽게 분해되었다. UV광조사에 의해 $NO_3{^-}$으로부터 발생되는 산소라디칼이 옥살산을 분해시키는 것으로 조사되었다. 옥살산 분해율은 질산 0.5M 부근에서 최대를 이루다가 질산농도 증가에 따라 점차 감소하였다. 이것 역시 산소라디칼과 $NO_3{^-}$ 사이에서 반응으로 쉽게 설명될 수 있다.

  • PDF

자외선/오존 조사에 의한 Poly(vinyl butyral)의 광산화 (Photooxidation of Poly(vinyl butyral) Films by UV/Ozone Irradiation)

  • 주진우;장진호
    • 한국염색가공학회지
    • /
    • 제27권2호
    • /
    • pp.113-118
    • /
    • 2015
  • Poly(vinyl butyral), PVB was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PVB film were investigated by the measurement of reflectance, surface roughness, contact angles, elemental composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 400nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 274nm for the unirradiated PVB to 370nm at the UV energy of $5.3J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C=O bonds. The surface energy of the PVB film increased from $35.3mJ/m^2$ to $39.3mJ/m^2$ at the irradiation of $15.9J/cm^2$. While the zeta potentials decreased proportionally with increasing UV energy, the cationic dyeability of the PVB increased accordingly resulting from the improved affinity of the irradiated PVB surfaces containing the photochemically introduced anionic and dipolar dyeing sites.

UV조사를 통한 PET의 표면개질 (제1보) -화학구조 변화 및 표면특성 변화- (Surface Modification of PET Irradiated by Ultra-Violet (Part I) -Transformation of Chemical Structure and Surface Properties-)

  • 최혜영;이정순
    • 한국의류학회지
    • /
    • 제29권3_4호
    • /
    • pp.561-568
    • /
    • 2005
  • The irradiation of Ultra-Violet (UV) is an efficient treatment for polymer to improve hydrophilic properties. 4-Channel PET knit fabrics were treated with UVA and UVC to develop functional and environment-friendly fabric. The fabric was treated with various treatment times and distances from UV lamps having different wavelength. FT-IR and XPS investigated the chemical changes. To confirm the change of surface properties, contact angle, surface energy and SEM were examined. The study of UV as a treatment for PET knit fabric shows significant changes in chemical and surface properties, which is proved by analyses. FT-IR and XPS analyses prove the augmentation of carboxylic, Hydrophilic groups on the surfaces treated by UV. The increase of water contact angle and surface energy means more water wettable and surface energy of PET film was substantially increased by UV irradiation time. The ageing after surface treatment had little influence on the surface energy of the irradiated PET film. SEM proves the surface modification of PET such as etching, bubble and crack. The negative effects are increased in accordance with increasing treatment time.

자외선/오존 조사에 의한 Poly Ketone의 광산화와 염색성 (Photo-oxidation and Dyeability of Poly Ketone by UV/O3 Irradiation)

  • 김민수;장용준;장진호
    • 한국염색가공학회지
    • /
    • 제25권1호
    • /
    • pp.25-29
    • /
    • 2013
  • Poly ketone (PK) was photo-oxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PK film was investigated by the measurement of reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance, particularly at the wavelength of 380nm, decreased with increasing UV energy. And the irradiation produced nano-scale roughness on the surface uniformly. The maximum surface roughness increased from 25.3nm for the unirradiated sample to 104.9nm at the irradiation of $42.4J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The surface energy of PK film increased from $43.3mJ/m^2$ for the unirradiated sample to $71.9mJ/m^2$ at the irradiation of $31.8J/cm^2$. The zeta potential of the UV-irradiated PK decreased with increased UV energy and the dyeability to cationic dyes increased accordingly, resulting from the photochemically introduced anionic and dipolar dyeing sites on the PK films surfaces.

Hydrophilic Modification of Poly(ethylene oxide) by UV Irradiation

  • Koo, Gwang-Hoe;Jang, Jin-Ho
    • 한국염색가공학회지
    • /
    • 제21권5호
    • /
    • pp.16-20
    • /
    • 2009
  • Films of Poly(ethylene oxide), PEO, were modified to impart hydrophilicity via UV irradiation. The UV irradiation treatment produced new photo-oxidized groups of carbonyl and ether groups as indicated in ATR and ESCA analysis. It was found that water contact angle decreased from $15^{\circ}C$ to $10^{\circ}C$ and total surface energy of PEO increased from 54.2 mN/m to 76.6 mN/m with increasing UV energy, which was attributed to significant contribution of acid base interaction of the photo-oxidized PEO rather than nonpolar interaction originating from the dominant increase in Lewis acid parameter. The increased hydrophilicity and surface energy were also proved by the decreased water wetting time.

UV/Ozone 조사에 의한 PTT 필름의 연속식 표면처리와 염색성 (Continuous Surface Treatment and Dyeability of PTT Film via $UV/O_3$ Irradiation)

  • 장진호;박대선
    • 한국염색가공학회지
    • /
    • 제17권1호
    • /
    • pp.7-13
    • /
    • 2005
  • Continuous and intense UV irradiation on PTT film using two types of UV bulbs at different irradiation power level was carried out to modify surface characteristics of the film including zeta potential, wettability, surface energy, and dyeability. ESCA analysis of the irradiated film showed higher O/C ratio than the untreated film indicating photooxidation of outer surface layer. ATR analysis showed that the ester bonds were broken and some new groups were produced such as carboxylic acid, phenolic hydroxy, and other esters, implying that ester bonds of PTT was responsible for the observed photooxidation effect. The surface of the treated PTT film became more hydrophilic and wettable to water, coupled with increased surface energy. Polar component of the surface energy increased and nonpolar component decreased with increasing irradiation energy. The treatment also decreased zeta potential of the modified surface and nanoscale roughness increased with increasing irradiation. The dyeability of the treated films to catonic dyes was significantly improved by electrostatic and polar interaction between dye molecules and the anionic film surface. The UV irradiation seems to be a viable polymer surface modification technology, which has advantages such as no vacuum requirement and continuous process unlike plasma treatment.

자외선 조사에 의해 표면 개질된 PVA 편광필름의 광학특성 (Optical Properties of PVA Polarizing Films Surface-modified by UV Irradiation)

  • 구광회;장진호
    • 한국염색가공학회지
    • /
    • 제18권6호
    • /
    • pp.49-56
    • /
    • 2006
  • Surface treatment using UV irradiation was carried out to improve optical properties of polarizing films. The effects of UV energy of the UV-treated PVA films were investigated by measuring reflectance, surface roughness, contact angles, ESCA, and ATR. Reflectance decreased at wavelength of 450 nm or less and surface roughness increased with increasing UV energy. Water contact angle increased in the irradiated PVA films and surface energy decreased with increase in w energy. An analysis showed that the OH groups were broken and some new groups were introduced such as C=C and C=O bonds together with increased $O_{1s}/C_{1s}$, resulting in the observed surface modification effect. Surface modified PVA polarizing films showed improvement in light transmittance of polarizing films at high wavelength region without deteriorating polarization efficiency, which was not affected by UV irradiation sequence during manufacturing processes such as coloring and drawing.