• Title/Summary/Keyword: UV -Vis spectra

Search Result 329, Processing Time 0.029 seconds

Charaterization of structural, electrical, and optical properties of AZO thin film as a function of annealing temperature (열처리 온도에 따른 AZO 박막의 구조적, 전기적, 광학적 특성 분석)

  • Ko, Ki-Han;Seo, Jae-Keun;Lee, Sang-Joon;Hwang, Chae-Young;Bae, Eun-Kyung;Lim, Moo-Kil;Choi, Won-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1343_1344
    • /
    • 2009
  • In this work, transparent conducting Al-doped zinc oxide (AZO) films were prepared on Corning glass substrate by RF magnetron sputtering using an Al-doped ZnO target (Al: 2 wt.%) at room temperature and all films were deposited with athickness of 150 nm. We investigated the effects of the post-annealing temperature and the annealing ambient on structural, electrical and optical properties of AZO films. The films were annealed at temperatures ranging from 300 to $500^{\circ}C$ in steps of $100^{\circ}C$ using rapid thermal annealing equipment in oxygen. The thickness of the film was observed by field emission scanning electron microscopy (FE-SEM) and grain size was calculated from the XRD spectra using the Scherrer equation and their electrical properties were investigated using a hole measurement and the reflectance of AZO films was investigated by UV-VIS spectrometry.

  • PDF

D-A-D type molecules based on dibenzophosphole-chalcogenides and triphenylamine moieties; effects of chalcogenide atoms on their photochemical properties

  • Iijima, Shunsuke;Hori, Keichi;Nakashima, Takuya;Kawai, Tsuyoshi
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.61-63
    • /
    • 2014
  • 3,7-bis(4-(diphenylamino)phenyl)-5-phenyl-5H-benzo[b]phosphinedole 5-sulfide (DBPPS-TPA) and 3,7-bis(4-(diphenylamino)phenyl)-5-phenyl-5H-benzo[b]phosphinedole 5-selenide (DBPPSe-TPA) are newly synthesized D-A-D type molecules based on dibenzophospholes and their physic-chemical properties are studied in comparison with a P=O type compouond, 3,7-bis(4-(diphenylamino)-5-phenyl-5H-benzo[b]phosphinedole 5-oxide (DBPPO-TPA). Fluorescence emission and electrochemical redox properties of these compounds are investigated regarding results of density functional theory (DFT) calculations, X-ray crystallographic structures and UV-vis absorption spectra. These results exhibit systematic variation in optical properties of these compounds having P=O, P=S, and P=Se units. LUMO energy level is systematically modulated with different chalcogenide atoms.

The Effect of Surface Plasmon on Internal Photoemission Measured on Ag/$TiO_2$ Nanodiodes

  • Lee, Hyosun;Lee, Young Keun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.662-662
    • /
    • 2013
  • Over the last several decades, innovative light-harvesting devices have evolved to achieve high efficiency in solar energy transfer. Research on the mechanisms for plasmon resonance is very desirable to overcome the conventional efficiency limits of photovoltaics. The influence of localized surface plasmon resonance on hot electron flow at a metal-semiconductor interface was observed with a Schottky diode composed of a thin silver layer on $TiO_2$. The photocurrent is generated by absorption of photons when electrons have enough energy to travel over the Schottky barrier and into the titanium oxide conduction band. The correlation between the hot electrons and the surface plasmon is confirmed by matching the range of peaks between the incident photons to current conversion efficiency (IPCE, flux of collected electrons per flux of incident photons) and UV-Vis spectra. The photocurrent measured on Ag/$TiO_2$ exhibited surface plasmon peaks; whereas, in contrast to the Au/$TiO_2$, a continuous Au thin film doesn't exhibit surface plasmon peaks. We modified the thickness and morphology of a continuous Ag layer by electron beam evaporation deposition and heating under gas conditions and found that the morphological change and thickness of the Ag film are key factors in controlling the peak position of light absorption.

  • PDF

Deposition and Electrical Properties of (N-docosyl quinoliniurm)-TCNQ(1:2) Charge Transfer Complex Langmuir-Blodgett Films ((N-docosyl quinolinium)-TCNQ(1:2) 전하 이동 착물 Langmuir-Blodgett막의 누적 및 전기적 특성)

  • Jeong, Soon-Wook;Jeong, Hwae-Gul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2000
  • In this study, ultra-thin films of (N-docosyl quinolinium)-TCNQ(1:2) complex were prepared on the hydrophilic substrate by Langmuir-Blodgett(LB) technique. The characteristics of ${\pi}-A$ isotherms were studied to find optimum conditions of deposition by varying temperature of subphase, compression speed of barrier and amount of spreading solution. Using UV-vis spectra, capacitance and thickness, deposition of LB films was confirmed together with the thickness of the naturally oxidized aluminum film inside a device and dielectric constant of (N-docosyl quinolinium)-TCNQ(1:2) complex. The dielectric constant of LB film was about $4.59{\sim}5.58$. The electrical properties of (N-docosyl quinolinium)-TCNQ(1:2) complex were investigated at room temperature. The conductivity of this film measured by the direction of either vertical or horizontal axis was found to have a quite different value.

Isolation of Lipoxygenase Inhibitor from Indonesian Herb

  • Alfi Khatib;Kim, Young-Chan;Chung, Shin-Kyo
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.111.2-112
    • /
    • 2003
  • A total of 20 extracts derived from different plant family commonly used in Indonesian traditional inflammation medicine were screened for their inhibitory effect on soybean lipoxygenase (SBL) and hyaluronidase (HAse) activity. Three methanol extracts, the bark of Cinnamomum burmanni (CB), the leaves of Piper betel (PB), and fruit of Barringtonia acutangula (BA) were found to have high inhibitory effects, whereas the methanol extract of the leaves of Mimusops elengi (ME) have medium inhibitory effect. The IC50 of CB, PB, BA and ME were found to be 21.7, 16.9, 39.1 and 62.8 g/$m\ell$, respectively. Among the tested extracts, only CB inhibited HAse (IC50 = 27g/$m\ell$). CB was successively fractionated with n-hexane, ethyl acetate, butanol and water. The EtOAc fraction having the strongest activity was fractionated and some compounds were isolated and purified by a preparative HPLC(Develosil ODS-HG-5 column). Coumarin and 2-hydroxy cinnamaldehyde. were identified through the analyses of UV-Vis absorption 1H-NMR, 13C-NMR and FAB+-MS spectra.

  • PDF

Role of Gel to Fluid Transition Temperatures of Polydiacetylene Vesicles with 10,12-Pentacosadiynoic Acid and Cholesterol in Their Thermochromisms

  • Kwon, Jun Han;Song, Ji Eun;Yoon, Bora;Kim, Jong Man;Cho, Eun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1809-1816
    • /
    • 2014
  • This study demonstrates gel-to-fluid transition temperatures of polydiacetylene bilayer vesicles could play important roles in their colorimetric transition temperatures. We prepared five types of polydiaceylene vesicles with 10,12-pentacosadiynoic acid (PCDA) and cholesterol (0-40 mol % of total content). From temperature-dependent observations of the optical signals (colors and UV-vis spectra), the blue-to-red colorimetric transition temperatures of polydiacetylene vesicles were decreased with the cholesterol contents. A further study with microcalorimetry and dynamic light scattering revealed that the polydiacetylene vesicles first underwent gel-to-fluid transitions, which were followed by event(s) responsible for the colorimetric transitions. Energies required for each event were quantified from analysis of the peaks in the microcalorimetry thermograms. The inclusion of cholesterol in the vesicles decreased both the gel-to-fluid and the colorimetric transition temperatures, suggesting that the colorimetric transition of the polydiacetylene vesicles was mediated by the former event although the event was not the direct reason for the color change.

Syntheses and Optical Properties of the Water-Dispersible ZnS:Mn Nanocrystals Surface Capped by L-Aminoacid Ligands: Arginine, Cysteine, Histidine, and Methionine

  • Lee, Ju-Ho;Kim, Yong-Ah;Kim, Ki-Moon;Huh, Young-Duk;Hyun, June-Won;Kim, H.S.;Noh, S.J.;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1091-1096
    • /
    • 2007
  • Water dispersible ZnS:Mn nanocrystals were synthesized by capping the surface of the nanocrystals with four kinds of aminoacids ligands: arginine, cystein, histidine, and methionine. The aminoacids capped ZnS:Mn nanocrystal powders were characterized by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the aminoacids capped ZnS:Mn colloidal nanocrystals were also measured by UV/Vis and solution photoluminescence (PL) spectroscopies in aqueous solvents. The solution PL spectra showed broad emission peaks around 575 nm (orange light emissions) with PL efficiencies in the range of 4.4 to 7.1%. The measured particle sizes for the aminoacid capped ZnS:Mn nanocrystals by HR-TEM images were in the range of 5.3 to 11.7 nm.

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.

Cytotoxic Potentials of Tellurium Nanowires in BALB/3T3 Fibroblast Cells

  • Mahto, Sanjeev Kumar;Vinod, T.P.;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3405-3410
    • /
    • 2011
  • We have investigated the cytotoxic potential of tellurium (Te) nanowires in BALB/3T3 fibroblast cells. Te nanowires were synthesized through an aqueous phase surfactant assisted method. Toxicological experiments, such as analysis of morphological changes, MTT assay, DAPI staining, and estimation of intracellular reactive oxygen species, were carried out to reveal the cytotoxic effects of Te nanowires. Te nanowires were found to be cytotoxic at all concentrations tested, in a dose-dependent manner. The UV/Vis spectra of Te nanowires suspended in a culture medium showed drastic changes and disappearance of two broad absorption peaks. The physicochemical properties such as, surface charge, size, and shape of Te nanowires were found to be altered during exposure of cells, due to the instability and agglomeration of nanowires in the culture medium. These results suggest that the chemical components of the DMEM medium significantly affect the stability of Te nanowires. In addition, TEM images revealed that necrosis was the basic pattern of cell death, which might stem from the formation of toxic moieties of tellurium, released from nanowire structures, in the bioenvironment. These observations thus suggest that Te nanomaterials may pose potential risks to environmental and human health.

Fabrication and Characterization of CdSe/ZnS-QDs Incorporated Microbeads for Ultra-sensitive Sensor Applications (양자점을 이용한 고감도 마이크로 비드의 제조 및 특성)

  • Lee, Dong-Sup;Lee, Jong-Chul;Lee, Jong-Heun;Koo, Eun-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.189-194
    • /
    • 2010
  • Compared with organic fluorophores, semiconductor quantum dots (QDs) have the better properties such as photostability, narrow emission spectra coupled to tunable photoluminescent emissions and exceptional resistance to both photo bleaching and chemical degradation. In this work, CdSe/ZnS QDs nanobeads were prepared by the incorporation of CdSe/ZnS QDs with mesoporous silica to use as the optical probe for detecting toxic and bio- materials with high sensitivity, CdSe/ZnS core/shell QDs were synthesized from the precursors such as CdO and zinc stearate with the lower toxicity than pyrotic precursors. The QD-nanobeads were characterized by transmission electron microscopy, FL microscopy, UV-Vis and PL spectroscopy, respectively.