• Title/Summary/Keyword: UV -Vis spectra

Search Result 325, Processing Time 0.029 seconds

Preparation and Characterization of CdSe nanoparticle for Solar Cell application (태양전지용 CdSe 나노입자의 합성)

  • Kim, Shin-Ho;Park, Myoung-Guk;Lee, Bo-Ram;Lee, Hyun-Ju;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.318-321
    • /
    • 2007
  • CdSe nanoparticles were prepared by chemical solution methods using $CdCl_2{\cdot}4H_2O$ (or $Cd(NO_3)_ 2{\cdot}4H_2O$) and $Na_2SeSO_3$. The characteristics of CdSe nanoparticles were controlled by the react ion time, reaction temperature and reaction method as well as the surfactants. Cetyltrimethyl ammonium bromide(CTAB) was used as a capping agent to control the chemical reactions in aqueous solution. Polyvinylalcohol(PVA) was used as a templet in sono-chemical method. CdSe nanoparticles synthesized in aqueous solution showed homogeneous size distribution with relatively stable surface. CdSe nanoparticles synthesized in non-aqueous solution containing diethanolamine(DEA) showed the structure transformation from cubic to hexagonal as the reduction temperature increased from 80 to $160^{\circ}C$. Core shell CdSe was synthesized by sono-chemical method. Characteristics of CdSe nanoparticles were analyzed using transmission electron microscopy(TEM), x-ray photoelectron spectroscopy(XPS), x-ray diffraction(XRD), UV-Vis absorption spectra, fourier transform infrared spectroscopy(FT-IR) and photoluminescence spectra spectroscopy(PL). This paper presents simple routes to prepare CdSe nanoparticles for solar cell applications.

  • PDF

Synthesis and Optical Characteristics of PAM/HgS Nanocomposites

  • Qin, Dezhi;Yang, Guangrui;Zhang, Li;Du, Xian;Wang, Yabo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1077-1081
    • /
    • 2014
  • Polyacrylamide (PAM) -HgS nanocomposites were successfully prepared in polyacrylamide (PAM) matrix. From TEM and XRD characterizations, the synthesized HgS nanocrystals were chain-like spherical in shape with a diameter of about 40-60 nm and high crystalline quality. The quantum-confined effect of HgS nanocrystals was confirmed by UV-vis diffuse reflection spectra. The optical properties of products were investigated by using photoluminescence (PL) spectra, which showed that HgS nanocrystals exhibited good optical properties with maximum emission peak at about 640 and 650 nm at different reaction temperatures. The interaction of HgS nanocrystals with PAM was studied through FT-IR spectroscopy and TG analysis, which suggested that $Hg^{2+}$ could interact with functional groups of PAM. The experimental results indicated that PAM not only induced nucleation, but also inhibited further growth of HgS crystals and play an important role in the formation of PAM/HgS nanocomposites. In addition, the possible mechanism of HgS nanoparticles growth in PAM solution was also discussed.

Synthesis and Characterization of Molybdenum Complexes with Schiff Bases (I). Bis-(N-aryl salicylaldiminato) of dioxomolybdenum (VI) Complexes (몰리브덴의 시프-염기착물의 합성과 그 성질 (제1보). 다이옥소 몰리브데늄(VI)의 아릴살릴실알디미나토착물)

  • Oh Sang Oh;Bon Kweon Koo
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 1985
  • Dioxomolybdenum(VI) complexes, MoO$_2$(H-Sal-R)$_2$, R; arylamines, have been synthesized by reactions of dioxobis (salicylaldehydato) molybdenum(VI) with various primary amines. These complexes have been characterized by electric conductivity and spectroscopic studies. Infrared, uv-vis, and proton nmr spectra show that the complexes are six-coordinated with cis-MoO$_2$ group. And mass spectra indicates that the combining ratios for Mo (VI)-ligand are 1 : 2. They are yellow, stable for a considerably long time in the atmosphere at room temperature and slightly soluble in alcohol, dichloromethane and dimethylformamide but insoluble in benzene, ether and carbon tetrachloride.

  • PDF

The Application of a Laser to the Chemical Characterization of Radionuclides

  • Park, Y.J.;Park, K.K.;M/Y. Suh;S.K. Yoon;Park, Y.S.;Kim, D.Y.;Kim, W.H.
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.446-456
    • /
    • 2000
  • Laser induced photoacoustic, fluorescence, and photon correlation spectroscopies were applied to the chemical characterization of radionuclides in connection with the radiowaste treatment and disposal. Their measuring principles and systems were briefly described together with their advantages over conventional spectroscopies. Also, other applications of lasers are introduced. Laser induced photoacoustic spectra were measured for a P $r^{3+}$ solution with a very low molar absorptivity. The detection sensitivity was 4.3 $\times$10$^{-5}$ c $m^{1}$ and was 100 times better than that of a UV/VIS spectrophotometer. The Eu(III) excitation spectra($^{7}$ $F_{0}$ longrightarrow $^{5}$ $D_{0}$ transition) were measured for Eu(III)-phthalate complexes using laser fluorescence spectroscopy, showing that only two species, 1:1 and 1:2 complexes, are present in the Eu(III)-phthalic acid system. The size and size distribution for colloidal humic acids and Eu(III)-humate colloids was determined using photon correlation spectroscopy. The presence of Eu(III) enhanced the aggregation of humic acids.s.

  • PDF

Synthesis of LaMnO3-Diamond Composites and Their Photocatalytic Activity in the Degradation of Weak Acid Red C-3GN

  • Huang, Hao;Lu, Benqian;Liu, Yuanyuan;Wang, Xeuqian;Hu, Jie
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850121.1-1850121.11
    • /
    • 2018
  • In this study, a series of $LaMnO_3$-diamond composites with varied $LaMnO_3$ mass contents supported on micro-diamond have been synthesized using a sol-gel method. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and the Fourier transform infrared spectra (FTIR). Meanwhile, the photocatalytic performances were also tested by photoluminescence (PL) spectroscopy, ultraviolet-visible diffuse reflection spectra (UV-Vis DRS) and the degradation of weak acid red C-3GN (RC-3GN). Results show that the peak position of $LaMnO_3$ is shifted to low angle after the introduction of diamond, and perovskite particles uniformly distributed on the surface of diamond, forming a network structure, which can increase the active sites and the absorption of dye molecules. When the mass ratio of $LaMnO_3$ and diamond is 1:2 (LMO-Dia-2), the composite shows the most excellent photocatalytic activity. This result offers a sample route to enlarge the range of the application of micro-diamond and provide a new carrier for perovskite photocatalysts.

Synthesis of Doped Polymethylphenylsilane Conductive Polymers and their Structure Characteristics (포리메틸페닐실란계 전도성 고분자의 합성과 구조 특성)

  • Yang, Hyun-Soo;Kang, Phil-Hyun;Kim, Jeong-Soo;Ryu, Hae-il;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.954-962
    • /
    • 1996
  • Four kind of polysilanes which had side chains of methyl, phenyl, and mixed structures, were synthesized and modified by doping with iodine. The structural, thermal, and electric characteristics of obtained polymers were systematically observed with iodine, The structural, thermal, and electric characteristics of obtained polymers were systematically observed with FT-IR, UV/VIS, TGA/DTG, DSC, and measurement of electric conductivity. From FT-IR spectra, it was confirmed that the synthesized polysilanes had side chains of methyl, phenyl, and mixed structures. The thermal stabilities of the polymers were found to increase with phenyl substituents. The polysilanes with phenyl side groups showed ${\sigma}-{\sigma}*$ transition absorption at wavelengths longer than 350 nm. The bathochromic shift of polysilanes with phenyl substituents relates probably to the narrowed band gap caused by delocalization of ${\pi}$-electron. The polymers doped with iodine showed multi-step pyrolysis behavior and higher residue compared with that of the undoped polymers. The electric conductivities of the undoped and doped polysilanes were $10^{-5}S/cm$ and $10^{-4}S/cm$, respectively.

  • PDF

Thermal Stability of the Major Color Component, Cyanidin 3-glucoside, from a Korean Pigmented Rice Variety in Aqueous Solution (한국산 유색미의 주요성분인 Cyanidin 3-glucoside의 수용액에서의 열안정성)

  • Jo, Man-Ho;Yoon, Hye-Hyun;Hahn, Tae-Ryong
    • Applied Biological Chemistry
    • /
    • v.39 no.3
    • /
    • pp.245-248
    • /
    • 1996
  • Thermal stability of the major color component, cyanidin 3-glucoside, isolated from Korean pigmented rice (Oryza sativa var. Suwon 415) were investigated to explore possible application of value-added natural colors as food additives. The anthocyanin showed red and blue color with maximum absorption peaks at 511 nm and 572 nm in acidic (pH 2.0) and alkaline (pH 9.0) buffer solutions, respectively, and the thermal degradation reactions were carried out with different temperature ranges at $50{\sim}95^{\circ}C$. Degree of degradation was determined with UV/Vis spectra which indicate characteristic absorption patterns with sharp isosbestic points at 350 nm (pH 2.0), and 275, 310, and 405 nm (pH 9.0). Thus the reaction follows simple first-order kinetics. The anthocyanin was very stable against heat at acidic pH and relatively stable at alkaline pH with half-life values of 50.3 hr and 0.6 hr at $70^{\circ}C$, respectively. The activation energies and Arrhenius frequency factors of the pigment were 26.9 kcal $mol^{-1}\;and\;6.0{\times}10^{11}\;s^{-1}$, at pH 2.0, and 15.2 kcal $mol^{-1}\;and\;1.4{\times}10^{6}\;s^{-1}$, pH 9.0, and respectively.

  • PDF

Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes (방사분석과 분광학을 이용한 Am(III) 가수분해와 옥살레이트 착물 화학종 연구)

  • Kim, Hee-Kyung;Cho, Hye-Ryun;Jung, Euo Chang;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.397-410
    • /
    • 2018
  • When considering the long-term safety assessment of spent-nuclear fuel management, americium is one of the most radio-toxic actinides. Although spectroscopic methods are widely used for the study of actinide chemistry, application of those methods to americium chemistry has been limited. Herein, we purified $^{241}Am$ to obtain a highly pure stock solution required for spectroscopic studies. Quantitative and qualitative analyses of purified $^{241}Am$ were carried out using liquid scintillation counting, and gamma and alpha radiation spectrometry. Highly sensitive absorption spectrometry coupled with a liquid waveguide capillary cell and time-resolved laser fluorescence spectroscopy were employed for the study of Am(III) hydrolysis and oxalate (Ox) complexation. $Am^{3+}$ ions under acidic conditions exhibit maximum absorbance at 503 nm, with a molar absorption coefficient of $424{\pm}8cm^{-1}{\cdot}M^{-1}$. $Am(OH)_3(s)$ colloidal particles formed under near neutral pH conditions were identified by monitoring the absorbance at around 506-507 nm. The formation of ${Am(Ox)_3}^{3-}$ was detected by red-shifts of the absorption and luminescence spectra of 4 and 5 nm, respectively. In addition, considerable enhancements of the luminescence intensities were observed. The luminescence lifetime of ${Am(Ox)_3}^{3-}$ increased from 23 to 56 ns, which indicates that approximately six water molecules are replaced by carboxylate ligands in the inner-sphere of the Am(III). These results suggest that ${Am(Ox)_3}^{3-}$ is formed through the bidentate coordination of the oxalate ligands.

Synthesis and characterization of noble metal coupled N-TiO2 nanoparticles

  • Lee, Kyusang;Moon, Jiyeon;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.374.2-374.2
    • /
    • 2016
  • Volatile organic compounds (VOCs) in the atmosphere are harmful materials which influence indoor air environment and human health. Titanium dioxide ($TiO_2$) is photocatalyst extensively used in degradation of organic compound. To improve the photocatalytic activity in the visible light region, doping with non-metals element or loading noble metals on the surface of $TiO_2$ is generally proposed. In this study, N- doped $TiO_2$ having photocatalytic activity in visible light region was attached noble metal such as Pt, Ag, Pd, Au by coupling method. Catalytic activities of Noble metal coupled $N-TiO_2$ powders were evaluated by the improvement of their photocatalytic activities and the degradation of VOC gas. A UV-Vis spectrophotometer was used to measure the diffuse reflectance spectra of coupled $N-TiO_2$ sample. The photocatlytic activities of as prepared samples were characterized by the decoloration of aqueous MB solution under Xenon light source (UV and visible light). To measure of decomposition VOCs, ethylbenzene was selected for target VOC material and the concentration was monitored under UVLED irradiation in a closed chamber system. Adjusting the initial concentration of 10~12 ppm, to evaluate the removal characteristics by using the coupled $N-TiO_2$.

  • PDF

Electrochemical Characteristics of Camphorsulfonic Acid Doped Polyaniline by Secondary Doping (CSA도핑된 폴리아닐린 이차 도핑과 전기화학적 특성)

  • Park Jong-Ho;Cho Seung-Koo
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.138-142
    • /
    • 2004
  • The polyaniline films of emeraldine base (EB) and leucoemeraldine base (LEB) form doped with cam-phorsulfonic acid (CSA) were prepared by casting the mixed solution of chloroform and m-cresol on ITO (indium tin oxide) electrode. By analyzing UV-vis spectra of the mixed solutions, the effects of the secondary doping by m-cresol were obtained. And the conductivity of polyaniline film was increased with increasing m-cresol content. As the results of analyzing cyclic voltammograms, it was known that the redox peak currents of polyaniline electrode prepared from LEB were larger and more reversible than those of polyaniline eleclrodes prepared from EB. The charge transfer resistances $(R_{ct})$ of polyaniline electrodes were reduced with increasing m-cresol content, showing smaller Rct for LEB/CSA than EB/CSA.