• Title/Summary/Keyword: UV살균

Search Result 179, Processing Time 0.032 seconds

Changes in Quality of UV Sterilized Takju during Storage by Honeycomb Type-UV Sterilizer (허니컴방식 UV 살균기를 이용한 살균 탁주의 저장 중 품질변화)

  • Lee, Jang-Woon;Jung, Jin-Joo;Choi, Eun-Ju;Kang, Sung-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.652-656
    • /
    • 2009
  • A cylindrical ultraviolet (UV) sterilization system was developed for decreasing microorganisms in takju. The takju was passed through 110 strips of honeycomb-type teflon tubing with 9 UV lamps (1,395 W) set between the teflon tubes. Thus, during passage, the takju was effectively exposed to the UV rays without loss. In terms of the overall quality aspects of the takju, the optimum sterilization condition was set for 4 min at 2 L/min. A 2-3 log cycle decrease in viable cell numbers of total bacteria and fungi was observed at this operating condition. Quality changes in the UV-sterilized takju were examined via UV irradiation of samples followed by storage at 30oC for 8 days. To evaluate the quality changes, pH, amino nitrogen content, acidity, reducing sugar content, and viable cell numbers of total bacteria and fungi were measured. Increases in pH, acidity, and amino nitrogen content were observed in both the takju control and UV sterilized takju with increasing storage time. However, reducing sugar content was decreased in both samples. The L, a, and b values of the control takju and UV sterilized takju showed similar trends over the storage period. Viable cell numbers of fungi did not change in the control or UV sterilized takju during storage, showing approximately $10^8\;CFU/mL$ and $10^4-10^5\;CFU/mL$, respectively. In addition, viable cell numbers of total bacteria remained lower in the UV sterilized takju over 4 days compared to the non-sterilized takju.

Study of an Optical Approach to Ultraviolet Irradiance for Space Sterilization Using a UV LED Light Source (UV LED 광원을 이용한 공간 살균을 위한 자외선 조사량 밀도의 광학적 연구)

  • Jong-Tae Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.235-240
    • /
    • 2024
  • Since the coronavirus pandemic, research and application of space sterilization effects using UV light sources have been rapidly increasing. In this paper, the space-sterilization effect of UV LED light sources that can be built into indoor environmental systems or lighting devices is quantitatively analyzed through an illumination optical approach. Through this, it is possible to establish a foundation for optimizing the sterilization effect in indoor spaces in the 275±5 nm wavelength range, which is known to have excellent space-sterilization power.

Development of an UV Distribution Model for the Design of a Submerged UV Disinfection Reactor and Its Application (침지형 자외선 살균조 설계를 위한 자외선 분포 모델의 개발 및 적용)

  • Park, Changyeun;Kim, Sunghong;Choi, Younggyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.505-512
    • /
    • 2021
  • A 3D model was developed to calculate the UV intensity of a submerged-type UV disinfection reactor. Numerical experiments were conducted by inputting the design factors of an open channel-type disinfection reactor and a pipe-type disinfection reactor that were installed in an actual sewage treatment plant. The following data were obtained: The average UV intensity of the installed open channel-type reactor and pipe-type reactor was 7.87 mW/cm2 and 13.09 mW/cm2, respectively; the UV dose reflecting the UV irradiation time and taking into account attenuation effects such as mixing imbalance, lamp aging, temperature, and fouling, was expected to be 21.1 mJ/cm2 and 24.8 mJ/cm2, respectively, and these values are 5 % and 24 % higher than the target UV dose of 20 mJ/cm2, respectively. By using the UV3D model, the optimal lamp position, which maximizes the average UV intensity without changing the size of the disinfection reactor or lamp output power, can be found. In this case, by only adjusting the lamp position, the average UV intensity can be increased by 0.9 % for the open channel-type and 0.5 % for the pipe-type, respectively. A better average UV intensity can be obtained by model simulation. By adjusting the horizontal and vertical ratio of the open channel-type reactor and by moving the lamp position, the average UV intensity can be increased by 7.4 % more than the present case.

Method of Efficiency Enhancement of Sterilization System (UV-LED 회전을 이용한 살균시스템의 효율 향상 방법)

  • Kim, Hyun;Shim, Jun-Hwan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.196-196
    • /
    • 2011
  • 최근 연구가 활발히 진행되고 있는 UV-LED를 활용한 살균 기술에 있어서 제조 공정상 고가를 유지하는 UV-LED는 그 살균 시스템의 발전에 큰 지장이 되고 있다. 이러한 문제점을 해결하기 위하여 본 연구에서는 LED의 갯수는 줄어들지만 살균 효율은 유지될 수 있는 시스템을 살펴보았다. 이 시스템에서는 UV-LED 갯수를 1개로 유지하며 이를 LED의 방사 Angle에 맞추어 꺾은 상태로 회전하게 되고 그 조광 범위가 향상된다. 또한 그 상태에서 조광구역과의 거리와 회전 시키는 스피드, Angle의 변화에 따른 최적의 위치 및 속도를 찾아보았다. 현재는 일반 가시광 LED를 이용하여 LED를 회전했을 때의 조광 범위와 조광의 정도에 대해서만 서술하였고 추후 UV-LED를 통하여 더 활발한 연구를 진행하려 한다.

  • PDF

Ultraviolet Inactivation of Escherichia coli in Stainless Steel Cups (스테인리스스틸 컵 내 Escherichia coli의 자외선 살균)

  • Mok, Chulkyoon;Lee, Nam-Hoon
    • Food Engineering Progress
    • /
    • v.13 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Ultraviolet (UV) is widely used as a sterilizing agent in restaurants and catering facilities in Korea. Efficacy of UV sterilizers (UVS) was investigated against E. coli on the inner bottom of stainless steel cups. UV intensity on the bottom of cups varied widely with the locations of cups in UVS, showing higher values at center while lower values at outskirts. The deviations in UV intensity were remarkable on top shelf, but alleviated as proceeded to middle and bottom shelves. Inactivation of E. coli was proportional to the UV intensity and treatment time, consequently to UV dose, and showed a pseudo-first-order kinetics with tailing. Initial inactivation rate constants ($K_{1}$) deviated with the locations of the cups, while final inactivation rate constants ($K_{2}$) showed comparable values. An equation for the calculation of the proposed UV treatment time was suggested.

Effect of UV Sterilization on Quality of Centrifuged Takju during Storage (자외선 살균이 청징 탁주의 저장 중 품질에 미치는 효과)

  • Choi, Eun-Ju;Jung, Jin-Joo;Lee, Jang-Woon;Kang, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.461-466
    • /
    • 2010
  • A cylindrical UV sterilization system was developed to decrease microorganisms in centrifuged Takju (CT). CT was run through 110 strips of honey comb type-teflon tubes and 9 UV lamps (1395 W) were equipped between teflon tubes. The optimum sterilization condition of CT was fixed for 1.5 min at 2 L/min in overall quality aspects; also, 5~6 log cycle decrease of viable cell numbers of total bacteria and yeast was observed at this operating condition. Quality changes of UV-sterilized CT were examined by UV irradiation of CT followed by storing at $30^{\circ}C$ for 8 days. To evaluate quality changes of UV-sterilized CT, pH, amino nitrogen content, acidity, reducing sugar content and viable cell numbers of total bacteria and yeast were measured. The growth of yeast and bacteria was retarded, showing around $10^8\;CFU/mL$ even after 4 days and $10^8\;CFU/mL$ after 6 days, respectively. Also, UV sterilized CT showed no changes in pH, titratable acidity, and amino nitrogen content during storage except reducing sugar content. UV sterilization did not cause significant difference in L, a, and b values between CT and UV-sterilized CT over the storage period.

EFFECTS OF INTENSITY VARIATIONS IN UV AIR TREATMENT SYSTEMS (자외선 처리 시스템의 강도 변화에 대한 영향)

  • Kim, Jeong-Ho;Hong, Seung-Heun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.271-272
    • /
    • 2017
  • 자외선 에너지는 미생물의 DNA를 파괴함으로써 살균 효과를 일으킨다. 자외선 방사로 공기 중 미생물에 대하여 높은 살균력을 얻기 위해선 강한 자외선 강도와, 흐르는 공기가 충분한 시간 동안 강한 자외선에 노출되어야 하므로 균일한 자외선 방사는 매우 중요하다. 기존 UV살균 시스템은 강한 자외선 에너지와 공기의 빠른 이동에 필요한 UV방사의 균일성을 제공하지 않았다. 하지만 HDS의 BioProtector 제품에 사용된 Advanced UV System(AUVS) 반사 캐비티 기술은 매우 높은 수준의 균일성을 생성함으로써 이 문제에 대한 해결책을 제공하며, 미생물 살균에 가장 효과적인 UV파장을 사용하여 6 LOG KILL (100만마리의 미생물 투입시 1마리 이하생존) 수준의 살균 효과를 만들었다.

  • PDF

Effect of UV-C irradiation for bacterial disinfection of drinking water (UV-C 조사에 의한 음용수 살균 시스템의 미생물 저해 효과)

  • Kim, Hyun-Joong;Kim, Yun-Jae;Seo, Se-Yeong;Lee, Chang Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.218-222
    • /
    • 2021
  • This study aimed to investigate bacterial disinfection in drinking water using a water purifier. Water artificially inoculated with Escherichia coli and Listeria monocytogenes at various concentrations was irradiated using ultraviolet (UV)-C at a rate of 3.4 L/min in a water purifier, and the disinfection effects of UV-C were evaluated. Both E. coli and L. monocytogenes were disinfected up to 107 colony-forming units (CFU)/2.8 L by the UV-C irradiation. Additionally, morphological study using fluorescence microscopy in conjunction with live/dead staining revealed that both the bacteria species were disinfected by the UV-C irradiation. Therefore, UV-C in water purifiers can effectively kill high concentrations of bacteria in distilled water. UV irradiation (UV-C: 254 nm wavelength, irradiation dose: 40 mJ/㎠) at a flow rate of 3.4 L/min on drinking water has the potential to sterilize bacteria-contaminated drinking water, at least for 3.2×107 CFU/2.8 L of E. coli and 8.4×107 CFU/2.8 L of L. monocytogenes.

Effects of UV Sterilization on Quality of Acer mono Sap (자외선 살균이 고로쇠 수액의 품질에 미치는 영향)

  • Choe, Su Bin;Han, Sang Jin;Han, Ouk Hee;Kim, Hak Su;Kang, Sung Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.1
    • /
    • pp.148-152
    • /
    • 2013
  • An ultraviolet (UV) sterilization system was developed to decrease the number of microorganisms in filtered Acer mono sap (FAS). The Acer mono sap (AS) was passed through 18 strips of PTA fluoroplastic tubing with 30 UV lamps (total 1,170 W). During passage, the AS was effectively exposed to the UV rays. The total bacteria, coliform group and fungi were sterilized at a flow rate ranging from 852 to 1,358 mL/min and a UV power higher than 156 W. Although the sensory score of the UV-sterilized AS was significantly lower than that of the untreated AS, the sensory score was better under the condition of 390 W and 852~1,358 mL/min than under the other conditions examined. ANOVA did not reveal a significant difference in pH, total acidity, sugar content and color characteristic under all conditions tested (p<0.05). Considering the overall attributes of the AS quality, the optimum sterilization condition was determined to be 390 W and 852~1,358 mL/min.

The effect of sterilization condition and UV-C irradiation on the reduction of contamination rate for oyster mushroom bottle culture (살균조건 및 UV-C 조사가 느타리버섯 병재배 오염율 감소에 미치는 영향)

  • Baek, Il-Sun;Chi, Jeong-Hyun;Jeoung, Yun-Kyeoung;Kim, Jeong-Han;Lim, Jae-Wook
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.256-261
    • /
    • 2015
  • This study was conducted to reduce contamination ratio of oyster mushroom bottle cultivation. The optimal conditions of substrate sterilization for reducing of contamination ratio were at $121^{\circ}C$ for 90 min. In addition, UV-C irradiation is good for lower contamination ratio to continue over 6 hours at cooling and inoculation room after sterilization. The contamination ratio and density of microorganisms of substrate were showed 0% after sterilization at $121^{\circ}C$ for 90 min. Trichoderma sp., main pathogen of mushrooms, was detected from substrate after sterilized during 2 or 4 hours at $101^{\circ}C$ and $105^{\circ}C$, respectively. The amount of electricity used was the lowest at $121^{\circ}C$ for 90 min than that of other sterilization conditions. The UV-C irradiation treatment was used UV-C lamp(40 watts) in the inoculation room($56m^3$). The density of bacteria did not detected after UV-C irradiation for 6 hours. And the death ratio of bacteria and Trichoderma sp. was 99.9% after UV-C irradiation for 6 hours. However, in the same UV-C irradiation time, the death ration of Cladosporium sp. was 90.9%. Therefore, the death ratio of fungi was lower than that of bacteria at the same UV-C irradiation treatment.