• Title/Summary/Keyword: UTOP

Search Result 17, Processing Time 0.028 seconds

A Study on the Economical Efficiency and Cost Analysis of Winter Construction by Application of Insulated Gang-form (동절기 단열갱폼으로 인한 경제성 효과 및 투입 원가 분석 연구)

  • Won, Joon-Yuen;Lee, Young-Do;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.347-354
    • /
    • 2018
  • This paper verifies the superiority of warming work in winter by applying the insulation gang-form to the apartment housing site and analyzes the economic feasibility of the application. According to the experimental results, the actual cost of warming work was about 52 million won less than planned, and 160 million won less than the existing average.(Note - The cost of gang form material increased from 260 million won to 310 million won after the change) As a result, the construction cost could be reduced by about 110 million won. As the costs of warming work can change depending on the number of floors, the building number, and the area of each site, it is deemed necessary to conduct a thorough review in advance at the site where the cost of warming work is to be applied.

DEVELOPMENT OF A TWO-DIMENSIONAL THERMOHYDRAULIC HOT POOL MODEL AND ITS EFFECTS ON REACTIVITY FEEDBACK DURING A UTOP IN LIQUID METAL REACTORS

  • Lee, Yong-Bum;Jeong, Hae-Yong;Cho, Chung-Ho;Kwon, Young-Min;Ha, Kwi-Seok;Chang, Won-Pyo;Suk, Soo-Dong;Hahn, Do-Hee
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1053-1064
    • /
    • 2009
  • The existence of a large sodium pool in the KALIMER, a pool-type LMR developed by the Korea Atomic Energy Research Institute, plays an important role in reactor safety and operability because it determines the grace time for operators to cope with an abnormal event and to terminate a transient before reactor enters into an accident condition. A two-dimensional hot pool model has been developed and implemented in the SSC-K code, and has been successfully applied for the assessment of safety issues in the conceptual design of KALIMER and for the analysis of anticipated system transients. The other important models of the SSC-K code include a three-dimensional core thermal-hydraulic model, a reactivity model, a passive decay heat removal system model, and an intermediate heat transport system and steam generation system model. The capability of the developed two-dimensional hot pool model was evaluated with a comparison of the temperature distribution calculated with the CFX code. The predicted hot pool coolant temperature distributions obtained with the two-dimensional hot pool model agreed well with those predicted with the CFX code. Variations in the temperature distribution of the hot pool affect the reactivity feedback due to an expansion of the control rod drive line (CRDL) immersed in the pool. The existing CRDL reactivity model of the SSC-K code has been modified based on the detailed hot pool temperature distribution obtained with the two-dimensional pool model. An analysis of an unprotected transient over power with the modified reactivity model showed an improved negative reactivity feedback effect.

Risk Factors Analysis and Quantitative Risk Assessment Model for Plant Construction Project (플랜트 건설 리스크 분석 및 리스크 정량화 모델 개발에 관한 연구)

  • Ahn, Sung-Jin;Kim, Tae-Hui;Nam, Kyung-Yong;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.77-86
    • /
    • 2019
  • Due to the increasing demand for and complexity of plant construction projects, unpredictable risk factors are on the consequent increase. For that reason, the quantitative risk analysis is being called for, in order for the development of a risk assessment model using risk indicators for the plant construction projects. This study used the claim payout data collected at a global insurance company to reflect the actual financial losses in plant construction projects as dependent variables in the risk assessment model. In terms of independent variables, the geographic information, i. e., landform, and the construction information including test-run, schedule rate, total cost and duration are adopted. In addition, this study suggests that the regression model containing such independent variables that are statistically significant can be applied to as a foundational guideline for the plant construction project risk analysis during the phase of construction and commissioning.

A Study on the Performance Evaluation and Field Application of Synthetic Resin Formwork (합성수지 거푸집의 성능평가 및 현장 적용성에 관한 연구)

  • Kim, Tae-Hui;Ahn, Sung-Jin;Lee, Young-Do;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.577-584
    • /
    • 2018
  • In This study, length variation test, shock test, and noise test were conducted to evaluate the performance of synthetic resin form. In addition, the handling easiness of synthetic resin form was examined through field application. Results of both thermal length variation test and shock test satisfied the KS standards. for noise test, the result of uro-form was 106.7dB(A) in average while that of synthetic resin form was 100.4dB(A) in average. It is considered that the high sound pressure level of euro-form with this noise characteristic may have negative physical and psychological impact on people who are consistently exposed in the residential area. Finally, there was no warping or bulging of the mold during concrete placement in the field application. Also, the concrete surface finish of synthetic resin form was better than that of euro-form.

A Study on the Changes in Types and Characteristics of Defects in Apartment House (공동주택 하자접수 유형변화 및 특징에 관한 연구)

  • Won, Joon-Yuen;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.4
    • /
    • pp.333-345
    • /
    • 2021
  • Due to the improved living standards and the expectation on higher-quality housing of tenements, complaints on the defects in the buildings are increasing every year. Also, the types of flaws are changing. We surveyed one hundred buildings(9,748 households) in 12 complexes across the country to investigate the shifted types. The number of defects received increased by about 1.6 times compared to 10 years ago, while the categories did not change. The report on the malfunctioning mechanical equipment has increased 1.4 times than ten years ago, and the types of the problem changed. The proportion of general parts(water supplement, drainage, water pressure) has decreased about 25% compared to 10 years ago. This is because the items related to the indoor environment become standardized in apartment housing. Therefore the problems related to those have been increased. As the specialized items applied to the tenement building are showing gradual expansion, the defect reports concerning those will also grow.

A Study on Bridge Construction Risk Analysis for Third-Party Damage (교량공사 제3자 피해 손실에 의한 리스크 분석 연구)

  • Ahn, Sung-Jin;Nam, Kyung-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • The recent bridge construction projects demand thorough and systematic safety and risk management, due to the increase of risk factors following the introduction of new and complex construction methods and technologies. Among many types of damages that can occur in bridge construction projects, the damages to third parties who are not directly related to the existing property of the contractor construction project can also bring about critical loss in the project in order to compensate the damages. Therefore, risks that could be caused by the loss occurred to indemnify the third party damages should be clearly analyzed, although there are not subsequent amount of studies focusing on the issue. Based on the past record of insurance payment from domestic insurance companies for bridge construction projects, this study aimed to analyze the risk factors of bridge construction for loss caused to compensate the third-party damages happened in actual bridge construction projects and to develop a quantified and numerical predictive loss model. In order to develop the model, the loss ratio was selected as the dependent variable; and among many analyzed independent variables, the superstructure, foundation, flood, and ranking of contractors were the four significant risk factor variables that affect the loss ratio. The results produced can be used as an essential guidance for balanced risk assessment, supplementing the existing analysis on material losses in bridge construction projects by taking into account the third-party damage and losses.

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.