• Title/Summary/Keyword: UPLINK

Search Result 585, Processing Time 0.018 seconds

Analysis of Interference Effect of ESIM on FS System Considering the Antenna Pointing Error (안테나 포인팅 에러를 고려한 ESIM이 FS 시스템에 미치는 간섭 영향 분석)

  • Kang, Young-Houng;Oh, Dae-Sub
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.503-510
    • /
    • 2016
  • In recent years, owing to the growing user demand for the two-way internet service based on the move global broadband communications, a new type of satellite terminal has developed, known as earth station in motion (ESIM). This service was required by Resolution 158 (WRC-15) to study on the coexistence with the co-primary fixed service (FS) in 27.5-29.5 GHz as a FSS uplink. In this paper, four scenarios was introduced to account for the antenna pointing error and the azimuth for an analysis on the sharing between ESIM and FS. From analysis results, the required separation distance between two systems should be about 32~52 km according to the elevation angles of $20^{\circ}{\sim}40^{\circ}$ using thresholds of 5% and 10% outage probability. Therefore, it is necessary to control the azimuth angle due to a moving terminal as well as the pointing error of ESIM to minimize the required separation distance and to protect the co-primary FS.

Joint User Scheduling and Power Control Considering Both Signal and Interference for Multi-Cell Networks (다중 셀 상향링크 네트워크에서 신호와 간섭을 동시에 고려하는 전력 제어 및 사용자 스케쥴링)

  • Cho, Moon-Je;Jung, Bang Chul;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.477-483
    • /
    • 2016
  • In this paper, we propose a distributed user scheduling with interference-aware power control (IAPC) to maximize signal to generating interference plus noise ratio (SGINR) in uplink multi-cell networks. Assuming that the channel reciprocity time-division duplexing (TDD) system is used, the channel state information (CSI) can be obtained at each user from pilot signals from other BSs. In the proposed scheduling, to be specific, each user reduces the transmit power if its generating interference to other BSs is larger than a predetermined threshold. Each BS selects the user with the largest SGINR among users. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms. It is worth noting that the proposed technique operates with distributed manner without information exchange among cells. Hence, it can be easily applied to the practical wireless systems like 3GPP LTE without significant modifications of the specification.

Performance Degradation of OFDMA Systems owing to Multi-User Interference (OFDMA 시스템에서 다중 사용자 간섭에 의한 성능 열화)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2226-2234
    • /
    • 2016
  • Orthogonal Frequency Division Multiplexing (OFDM) technique uses multiple sub-carriers for the data transmission. Therefore, Inter Carrier Interference(ICI) is generated because of nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over Doppler fading channels also causes ICI. In OFDMA(Orthogonal Frequency Division Multiplexing Access), multiple sub-carriers are allocated to each user. Therefore, inter carrier interference causes interference to other users. I evaluate the BER performance of OFDMA systems in frequency selective fading channel, considering Multi-User Interference (MUI) owing to the carrier frequency offset, the nonlinear high power amplifier, and the Doppler fading. In the uplink OFDMA, multi-user interference introduces larger BER degradation than in the downlink. I explain the reason and obtain the required characteristics of the nonlinear amplifier and the value of frequency offset for good BER performance. And I also analyze the BER degradation upon Doppler fading channel.

Random Channel Allocation Scheme Based on Split Algorithm in HIPERLAN 2 (HIPERLAN Type 2에서 Split 알고리즘에 기반한 랜덤채널 할당 기법)

  • 황의석;고유창;이승규;윤철식;이형우;조충호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.717-727
    • /
    • 2003
  • The HIPERLAN/2(HIgh PERformance Local Area Network Type2) is one of the wireless LAN standards for providing raw data rates of up to 54 Mbps. The MAC protocol of HIPERLAN/2 is based on TDMA/TDD, and resources in one MAC frame can be allocated dynamically by Access Point(AP). The random channel(RCH) is defined for the purpose of giving a mobile terminal the opportunity to request transmission resources in the uplink MAC frames. It is desirable that the number of RCHs is dynamically adapted by the AP depending on the current traffic situation. Allocation of excessive RCHs may waste radio resources and insufficient RCHs compared to traffic loads may result in many collisions in access attempts. We propose an RCH allocation scheme based on split algorithm in HIPERLAN/2. The simulation and analytic results show that the proposed scheme achieves a higher channel throughput, lower access delay and delay jitter than previously proposed RCH allocation schemes.

A Variable Transmission Window MAC protocol for QoS Support in EPON System. (EPON 시스템 QoS 지원을 위한 가변 윈도우 MAC 프로토콜)

  • Hwang Junho;Yoo Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11B
    • /
    • pp.891-899
    • /
    • 2004
  • Ethernet passive optical network (EPON) has drawn many attention as a promising access network technology because it can provide a high bandwidth with a low cost. Since the uplink in the EPON system is shared by many users, it is necessary for an EPON system to have an efficient bandwidth allocation mechanism. In addition, as the users demand more QoS-oriented applications, it is necessary for an EPON system to have an efficient mechanism supporting QoS. In this paper, we propose a variable window dynamic bandwidth allocation (DBA) algorithm for the EPON system. Unlike the previously proposed DBA algorithms, the variable window algorithm guarantees the QoS for the highest priority class, and at the same time provides more enhanced QoS for the lower priority classes by dynamically allocating bandwidth if necessary. It is verified through the simulations that the variable window algorithm can provide more enhanced QoS performance than other DBA algorithms.

Performance Analysis of Smart Antenna Base Station Implemented for CDMA2000 1X (CDMA2000 1X용으로 구현된 스마트 안테나 기지국 시스템의 성능분석)

  • 김성도;이원철;최승원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.694-701
    • /
    • 2003
  • In this paper, we present a hardware structure and new features of a smart antenna BTS (Base Transceiver Station) for CDMA2000 1X system. The proposed smart antenna BTS is a composite system consisting of many subsystems, i.e., array antenna element, frequency up/down converters, AD (Analog-to-Digital) and DA (Digital-to-Analog) converters, spreading/despreading units, convolutional encoder/Viterbi decoder, searcher, tracker, beamformer, calibration unit etc. Through the experimental tests, we found that the desired beam-pattern in both uplink and downlink communications is provided through the calibration procedure. Also it has been confirmed that the adaptive beamforming algorithm adopted to our smart antenna BTS is fast and accurate enough to support 4 fingers to each user. In our experiments, commercial mobile terminals operating PCS (Personal Communication System) band have been used. It has been confirmed that the smart antenna BTS tremendously improves the FER (Frame Error Rate) performance compared to the conventional 2-antenna diversity system.

A Novel Efficient Up-Link Scheduler for IEEE 802.16m (IEEE802.16m을 위한 효율적인 상향링크 스케줄러 연구)

  • Cho, Da-Young;Oh, Hyuk-Jun;Hong, Sung-Woong;Oh, Il-Hyuk;Ko, Kyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.979-985
    • /
    • 2012
  • The design of an efficient scheduler is a key design factor in IEEE 802.16m systems, in order to support services with various QoS smoothly. Although conventional studies of schedules have been suggested, those had problems that are not able to satisfy the delay condition and make the through-put declined, because they only focused on a specific action scenario rather than reflecting practical action scenarios which have real-time and non-real-time traffics variously. In this paper, an efficient uplink scheduling algorithm is proposed for IEEE 802.16m system by introducing the concepts of Virtual Time(VT) and Virtual Finish Time(VFT) based priority determination, and separate buffers for each QoS class in the mobile terminal. Simulation results showed that the proposed scheme had satisfied the delay requirement of real-time services even with improved throughput performance compared to conventional methods.

Resource Allocation Based on Interference Awareness for Device-to-Device Communication in Cellular Networks (셀룰러 네트워크에서 간섭 인지 기반의 단말간 직접 통신 자원할당 방법)

  • Yang, Mochan;Shin, Oh-Soon;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.557-559
    • /
    • 2014
  • We propose an efficient resource allocation scheme based on interference awareness for D2D (Device-to-Device) communication in cellular networks. Recently, many researchers have studied how to allocate frequency resources to DUE (D2D User Equipment) with full interference channel information. However, it is difficult to assume a scenario where instantaneous interference information between the CUE (Cellular UE) and DUE is known to the BS (Base Station). To tackle this problem, we proposed in this paper a new scheme in which the BS allocates a resource to CUE and DUE without a full channel information and can aware interference based on only transmit power and distance between UEs. Simulation results show effectiveness of the proposed scheme.

Iterative Self-Interference Channel Estimation for In-Band Full-Duplex Cellular Systems (대역내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정)

  • Shin, Changyong;Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In this paper, we propose an iterative self-interference (SI) channel estimation method for in-band full-duplex cellular systems that employ orthogonal frequency division multiple access (OFDMA) on downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) on uplink (UL), as in Long Term Evolution (LTE) systems. The proposed method first acquires coarse estimates of SI channels using DL signals and UL pilots, which are known to the base stations, and then refines the estimates by consecutively exploiting averaging in the frequency domain and channel truncation in the time domain. In addition, the method enhances the estimates further by iteratively executing this estimation procedure, and does not require any radio resources dedicated to SI channel estimation. Simulation results demonstrate that by significantly improving the SI channel estimation performance without requiring exact knowledge of the SI channel length, the proposed method achieves UL channel estimation performance and signal-to-interference-plus-noise ratio (SINR) performance very close to those in perfect SI cancellation.

Adaptive Switching Equalization for SC-FDMA System (SC-FDMA 시스템을 위한 적응형 스위칭 등화기법)

  • Kim, Joo-Chan;Bae, Jung-Nam;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.23-28
    • /
    • 2009
  • In this paper, we proposed and analyzed the performance of the adaptive switching equalization for SC-FDMA system. It is well known that SC-FDMA system have a fairly similar structure to OFDMA system. Furthermore, SC-FDMA system has great advantage of low PAPR compare to OFDM system. However, this system often suffers from wireless channel characteristics such as multipath fading and increased channel impulse response and so on. To reduce this channel influence, it strongly requires efficient adaptive equalization. Therefore, the proposed system operated upon two modes namely, ZF mode for slow speed and MMSE mode for high speed. From the simulation results, we can confirm that the proposed scheme has more efficient performance from the system complexity point of view. So we can expect that the proposed system will be applied design of 3GPP LTE uplink.

  • PDF