• Title/Summary/Keyword: UPLC method

Search Result 106, Processing Time 0.028 seconds

Development of a UPLC-MS/MS method for the therapeutic monitoring of L-asparaginase

  • Jeong, Hyeon-Cheol;Kim, Therasa;Yang, Deok-Hwan;Shin, Kwang-Hee
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.134-140
    • /
    • 2018
  • This study aimed to develop a UPLC-MS/MS method for determining plasma levels of L-aspartic acid and L-asparagine and the activity of L-asparaginase. L-aspartic acid, L-asparagine, and L-aspartic acid-2,3,3-$d_3$ were extracted from human plasma by protein precipitation with sulfosalicylic acid (30%, v/v). The plasma samples were analyzed using an Imtakt Intrada amino acid analysis column with 25 mM ammonium formate and 0.5% formic acid in acetonitrile as the mobile phase with step gradient method at a flow rate of 0.5 mL/min. The injection volume was $5{\mu}L$, and the total run time was 15 min. Inter- and intra-batch accuracies (%) ranged from 96.62-106.0% for L-aspartic acid and 89.85-104.8%, for L-asparagine, and the coefficient of variation (CV%) did not exceed 7%. The validation results for L-aspartic acid and L-asparagine satisfied the specified criterion, however, the results for L-asparaginase activity assay showed a borderline validity. This study could be a foundation for further development of therapeutic drug monitoring systems using UPLC-MS/MS.

Quantification of Globotriaosylsphingosine in Urine using UPLC-ESI-MS/MS; Application for Screening Fabry Disease (파브리병의 신속한 진단을 위한 소변 중 Globotriaosylsphingosine의 UPLC-ESI-MS/MS 분석법)

  • Yoon, Hye-Ran
    • YAKHAK HOEJI
    • /
    • v.60 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Globotriaosylsphingosine (lyso Gb3) is considered as one of the biomarkers for Fabry disease. A rapid and simple UPLC-MS/MS method was developed for the determination of reliable biomarker, lyso Gb3. Total analytical procedure takes only 15 min including sample preparation and MS/MS analysis. Limit of detection was 0.85 ng/ml (S/N=3). The calibration curve was linear over the range of 2.0~400.0 ng/ml ($R^2=0.9999$). Inter-day and intra-day assay accuracy were 93.4~100.6% (RSD, 0.6~6.0%) and 97.5~100.7% (RSD, 3.6~5.2%). Absolute recoveries of 97.6~98.6 showed excellence of a new analytical method. The method was applied to human and mice urines, proved the suitability for the quantification of lyso-Gb3 for screening, diagnosis and therapeutic monitoring of Fabry disease patients.

UPLC-Q-TOF-MS/MS Analysis for Steaming Times-dependent Profiling of Steamed Panax quinquefolius and Its Ginsenosides Transformations Induced by Repetitious Steaming

  • Sun, Bai-Shen;Xu, Ming-Yang;Li, Zheng;Wang, Yi-Bo;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.277-290
    • /
    • 2012
  • The metabolic profiles of Panax quinquefolius and its associated therapeutic values are critically affected by the repetitious steaming times. The times-dependent steaming effect of P. quinquefolius is not well-characterized and there is also no official guideline on its times of steaming. In this paper, a UPLC-Q-TOF-MS/MS method was developed for the qualitative profiling of multi-parametric metabolic changes of raw P. quinquefolius during the repetitious steaming process. Our method was successful in discriminating the differentially multi-steamed herbs. Meantime, the repetitious steaming-inducing chemical transformations in the preparation of black American ginseng (American ginseng that was subjected to 9 cycles of steaming treatment) were evaluated by this UPLC-Q-TOF-MS/MS based chemical profiling method. Under the optimized UPLC-Q-TOF-MS/MS conditions, 29 major ginsenosides were unambiguously identified and/or tentatively assigned in both raw and multi-steamed P. quinquefolius within 19 min, among them 18 ginsenosides were detected to be newly generated during the preparatory process of black American ginseng. The mechanisms involved were further deduced to be hydrolysis, dehydration, decarboxylation and addition reactions of the original ginsenosides in raw P. quinquefolius through analyzing mimic 9 cycles of steaming extracts of 14 pure reference ginsenosides. Our novel steaming times-dependent metabolic profiling approach represents the paradigm shift in the global quality control of multi-steamed P. quinquefolius products.

Determination of Free Amino Acids in Isatidis Radix By HILIC-UPLC-MS/MS

  • Pan, Yilin;Li, Jin;Li, Xiang;Chen, Jianwei;Bai, Ganggang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.197-203
    • /
    • 2014
  • A rapid, accurate and precise method for the determination of 22 amino acids in Isatidis Radix by Hydrophilic Interaction Ultra-High-Performance Liquid Chromatography Coupled with Triple-Quadrupole Mass Spectrometry (HILIC-UPLC-MS/MS) was established. Chromatographic separation was carried out on a Acquity UPLC BEH Amide column ($2.1mm{\times}100mm$, $1.7{\mu}m$) with gradient elution of acetonitrile (containing 0.05% formic acid and 2 mM ammonium formate) and water (containing 0.15% formic acid and 10 mM ammonium formate) at a flow rate of 0.4 mL/min; Waters Xevo$^{TM}$ TQ worked in multiple reaction monitoring mode. All components were separated in 17 min. All calibration curves were linear ($R^2$ > 0.991) over the tested ranges. The limits of detection (LOD) and limits of quantitation (LOQ) for these compounds were 0.21-79.55 and 0.72-294.23 ng/mL, respectively. The average recoveries were in the range of 93.75-104.16% with RSD value less than 6.56%. Therefore, this method could be an alternative assay for the determination of 22 amino acids in Isatidis Radix due to its rapidness, sensitivity, less sample and solvent consumption.

Simultaneous Determination of the Flavonoids and Limonoids in Citrus junos Seed Shells Using a UPLC-DAD-ESI/MS

  • Jo, Ara;Shin, Ji hun;Song, Hwa young;Lee, Ye Eun;Jeong, Da Eun;Oh, Sung Hwa;Mun, Myung Jae;Lee, Mina
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.64-70
    • /
    • 2020
  • Citrus junos seeds (CS) have been traditionally used for the treatment of cancer and neuralgia. They are also used to manufacture edible oil and cosmetic perfume. A large amount of CS shells without oil (CSS) are discarded after the oil in CS is used as foods or herbal remedy. To efficiently utilize CSS as a by-products, it needs to be studied through chemical analysis. Therefore, we developed an ultra-performance liquid chromatography (UPLC)-diode array detection (DAD) method for simultaneous determination and quantitative analysis of five components (two flavonoids and threes limonoids) in CSS. A Waters Acquity UPLC HSS T3 column C18 (2.1 × 100 mm, 1.8 ㎛) was used for this separation. It was maintained at 40 ℃. The mobile phase used for the analysis was distilled water and acetonitrile with gradient elution. To identify the quantity of the five components, a mass spectrometer (MS) with an electrospray ionization (ESI) source was used. The regression equation showed great linearity, with correlation coefficient ≥ 0.9912. Limits of detection (LOD) and limits of quantification (LOQ) of the five compounds were 0.09 - 0.13 and 0.26 - 0.38 ㎍/mL, respectively. Recoveries of extraction ranged from 97.45% to 101.91%. Relative standard deviation (RSD) values of intra- and inter-day precision were 0.06 - 1.15% and 0.19 - 0.25%, respectively. This UPLC-DAD method can be validated to simultaneously analyze quantities of marker flavonoids and limonoids in CSS.

Method validation for quantitative analyzing aflatoxin productivity in Aspergillus sp. isolated from soybean paste

  • SeongEui Yoo;WooSoo Jeong;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.1
    • /
    • pp.28-41
    • /
    • 2023
  • Non-aflatoxigenic Aspergillus oryzae and aflatoxigenic A. flavus cannot be clearly identified by partial sequencing of the internal transcribed spacer (ITS) and 18S ribosomal ribonucleic acid (18S rRNA) regions. This study aimed to compare the accuracy among three aflatoxin detection methods using ultra-performance liquid chromatography (UPLC), high-performance liquid chromatography (HPLC), and an enzyme-linked immunosorbent assay (ELISA) kit and to select the non-aflatoxigenic Aspergillus sp. isolated from soybean paste. All analytical methods were suitable according to the international standards of Codex Alimentarius FAO-WHO (CODEX) or the Ministry of Food and Drug Safety (MFDS). UPLC exhibited the best of limit of detection (LOD) and limit of quantification (LOQ). Based on UPLC, HPLC, and the ELISA kit assay, the P5 and P7 strains isolated from soybean paste had 1,663.49, 1,468.12, and >20 ㎍/kg and 1,470.08, 1,056.73, and >20 ㎍/kg, respectively, detected and re-identified as A. flavus. In contrast, the P3 and P4 strains (A. oryzae), which were detected below the MFDS standards in all assays, were confirmed as non-aflatoxigenic fungi. Among the methods evaluated for quantitative analysis of aflatoxin, UPLC and HPLC are superior in terms of accuracy, and the ELISA kit rapidly detects low concentrations of aflatoxin. Furthermore, this study demonstrates that any Aspergillus sp. isolated for use as a fermentation starter should be analyzed for potential aflatoxin production using UPLC and HPLC for accurate quantitative analysis or ELISA for the rapid detection of low-level concentrations of aflatoxin.

Quantitative Analysis of Rotenone and Deguelin in Biopesticides Containing Derris Extract by Ultra performance Liquid Chromatography (UPLC를 활용한 데리스 추출물 함유 유기농자재 중 Rotenone과 Deguelin 정량분석)

  • Lim, Sung-Jin;Kim, Jin-Hyo;Choi, Geun-Hyoung;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.52-56
    • /
    • 2015
  • BACKGROUND: Three commercial biopesticides containing derris extract, which is permitted as a commercial biopesticide substances by the Environmentally-friendly Agriculture Promotion Act, have been marketed in Korea. But, the quantitative analytical method of active substances for crop protection in biopesticides containing derris extract has not known. METHODS AND RESULTS: Solid phase extraction (SPE) cartridge clean-up method for the quantitative analysis of rotenone and deguelin in biopesticides containing derris extract was developed and validated by ultra-performance liquid chromatography (UPLC). The clean-up method was established using hydrophilic lipophilic balance (HLB) SPE cartridges for the bioactive substances in biopesticides containing derris extract, and the eluate was analyzed to quantify the rotenone and deguelin by the UPLC. LOQ and recovery rates of rotenone and deguelin were 0.085 and 0.044 mg/L, 95.7 and 93.3%, respectively. The content of rotenone and deguelin in three biopesticides containing derris extract were analyzed by the developed method, the results showed 0.001-0.236 and

Development of Simultaneous Analysis of Ferulic Acid, Caffeic Acid, Catechin and Taxifolin from Health Functional Food Pinus Pinaster Bark Extract by UPLC-MS/MS (건강기능식품 프랑스해안송껍질추출물 중 UPLC-MS/MS를 이용한 Ferulic acid, Caffeic acid, Catechin, Taxifolin 동시분석법 개발 연구)

  • Oh, Jae-Myoung;Kim, Ji An;Hu, Soo Jung;Choi, Yoon Hee;Oh, Keum Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.431-437
    • /
    • 2019
  • This study was conducted to develop a simultaneous analysis method for ferulic acid, caffeic acid, catechin and taxifolin from Health Functional Food (HFF) Pinus Pinaster bark extract. The simultaneous analytical method for ferulic acid, caffeic acid, catechin and taxifolin is carried out using UPLC-MS/MS. The method validation was performed to determine selectivity, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ) and precision for ferulic acid, caffeic acid, catechin and taxifolin. LC-MS/MS method was established using an Acquity UPLC BEH $C_{18}$ Column and was applied for these 4 compounds. Product-ion traces, at m/z $194.2{\rightarrow}133$, $180.2{\rightarrow}135$, $290.3{\rightarrow}245$, $304.3{\rightarrow}248$, were used for quantitative analysis of ferulic acid, caffeic acid, catechin and taxifolin, respectively. Excellent linearity ($r^2=0.999$) was observed for ferulic acid, caffeic acid, catechin and taxifolin in the concentration range (50-2500 mg/L). The observed recoveries of these 4 compounds were found to be between 84.9 and 104.9%, while precision was between 1.20 and 4.43% relative standard deviation (% RSD).

Metabolic profiling and method validation of marker compounds from Saposhnikoviae Radix and Peucedani Japonici Radix (방풍, 식방풍의 대사체 프로파일링을 통한 지표성분 선정 및 분석법검증)

  • Choi, Bo-Ram;Yoon, Dahye;Kim, Geum-Soog;Han, Kyung-Sook;Choi, Doo Jin;Lee, Young-Seob;Hyun, Do Yoon;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • Saposhnikoviae Radix (SR) and Peucedani Japonici Radix (PR) have been used as the main traditional herbal medicines in Korea, China and Japan. In this study, ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometry (UPLC-QTOF/MS)-based metabolomics was applied to evaluate the quality of SR and PR using the marker compounds. In the S-plot of SR and PR, 5-O-methylvisammioside and peucedanol were selected as a marker compound for SR and PR, respectively. Also, an UPLC method was established and well validated for marker compounds of SR and PR. These results suggested that the established analysis method could be used one of the good methods for the classification and quality assessment of SR and PR.

Determination of isoquinoline alkaloids by UPLC-ESI-Q-TOF MS: Application to Chelidonium majus L.

  • Jeong, Won Tae;Lim, Heung Bin
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.379-389
    • /
    • 2017
  • In this study, we set up an analytical method that can be used for rapid and accurate determination of representative isoquinoline alkaloids in medicinal plants using UPLC-ESI-Q-TOF MS (ultra pressure liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry). The compounds were eluted on a C18 column with 0.1 % formic acid and acetonitrile, and separated with good resolution within 13 min. Each of the separated components was characterized by precursor ions (generated by ESI-Q-TOF) and fragment ions (produced by collision-induced dissociation, CID), which were used as a reliable database. We also performed method validation: analytes showed excellent linearity ($R^2$, 0.9971-0.9996), LOD (5-25 ng/mL), LOQ (17-82 ng/mL), accuracy (91.6-97.4 %) as well as intra- and inter-day precisions (RSD, 1.8-3.2 %). In the analysis of Chelidonium majus L., magnoflorine, coptisine, sanguinarine, berberine and palmatine were detected by matching retention times and characteristic fragment ion patterns of reference standards. We also confirmed that, among the quantified components, coptisine was present in the highest quantity. Furthermore, alkaloid profiling was carried out by analyzing the fragment ion patterns corresponding to peaks of unknown components. In this manner, protopine, chelidonine, stylopine, dihydroberberine, canadine, and nitidine were tentatively identified. We also proposed the molecular structure of the fragment ions that appear in the mass spectrum. Therefore, we concluded that our suggested method for the determination of major isoquinoline alkaloids by UPLC-Q-TOF can be useful not only for quality control, but also for rapid and accurate investigation of phytochemical constituents of medicinal plants.