• 제목/요약/키워드: UNet++

검색결과 61건 처리시간 0.03초

의미론적 분할을 이용한 X-ray 영상 기반 신생아 호흡곤란 증후군 진단 기법 (Neonatal Respiratory Distress Syndrome Diagnosis Method Based on X-ray Images Using Semantic Segmentation)

  • 장어진;조한용;유선경;강미현;장한얼
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.539-542
    • /
    • 2022
  • 신생아 호흡곤란 증후군은 주로 미숙아에게 발생하는 호흡기 질환으로, 특징적 영상 소견 및 다른 검사 소견을 바탕으로 진단된다. 본 논문은 기계 장치 등 외부 요소의 영향을 최소화하고자 폐 영역을 분할하여 신생아 호흡곤란 증후군을 진단하는 기법을 제안한다. 분할에는 UNet 구조를 사용하고 진단에는 EfficientNet-B5를 사용하여 최종적으로 신생아 호흡곤란 증후군의 진단 정확도 0.852를 달성하였다.

웨이블릿 혼합 모듈: 웨이블릿 변환을 이용한 네트워크 내 고주파 성분 보존 (Wavelet Mix Module: Preserving High-Frequency in Network using Wavelet Transform)

  • 김민우;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.231-234
    • /
    • 2022
  • 본 논문에서는 '스케치로부터 RGB 이미지로의 변환'을 수행하는 웨이블릿 기반의 네트웍에서 생성된 이미지 품질을 높이기 위해, 네트워크가 저주파수에 편향되어 학습이 되는 것을 완화하고자 Wavelet Mix Module(WMM)을 제안하였다. WMM 은 UNet 구조의 skip-connection 과정에 적용되며, 웨이블릿 변환을 사용하여 인코더 특성으로부터 세부값을 추출하여 디코더 특성으로 전달함으로써 네트워크 내에서 고주파 성분이 보존되도록 한다. WMM 이 적용된 네트워크로부터 생성된 이미지는 정량적 및 정성적인 결과가 개선됨을 실험을 통해 확인하였다.

  • PDF

Matter Density Distribution Reconstruction of Local Universe with Deep Learning

  • Hong, Sungwook E.;Kim, Juhan;Jeong, Donghui;Hwang, Ho Seong
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.53.4-53.4
    • /
    • 2019
  • We reconstruct the underlying dark matter (DM) density distribution of the local universe within 20Mpc/h cubic box by using the galaxy position and peculiar velocity. About 1,000 subboxes in the Illustris-TNG cosmological simulation are used to train the relation between DM density distribution and galaxy properties by using UNet-like convolutional neural network (CNN). The estimated DM density distributions have a good agreement with their truth values in terms of pixel-to-pixel correlation, the probability distribution of DM density, and matter power spectrum. We apply the trained CNN architecture to the galaxy properties from the Cosmicflows-3 catalogue to reconstruct the DM density distribution of the local universe. The reconstructed DM density distribution can be used to understand the evolution and fate of our local environment.

  • PDF

NAFNet 기반 개선된 비디오 프레임 보간 기법 (Enhanced video frame interpolation based on NAFNet)

  • 윤기환;정진우;김성제;허진강
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1333-1335
    • /
    • 2022
  • 최근 딥러닝은 다양한 컴퓨터 비전에 적용되어 높은 성능을 제공하고 있고 이에 따라 중간 프레임을 생성하는 비디오 프레임 보간 기법에도 딥러닝이 적용되고 있다. 많은 딥러닝 기반의 비디오 프레임 보간 기법은 크게 옵티컬 플로우를 추정하는 플로우 추정 네트워크와 합성 네트워크로 구성되며 본 논문에서는 합성 네트워크 부분의 성능향상을 위한 네트워크에 대하여 다룬다. 합성 네트워크에 주로 사용되는 UNet 구조와 GridNet 구조의 장단점과 네트워크에 따른 보간 결과의 차이에 대해서 알아보고 영상 복원에서 제안된 NAFNet 을 비디오 보간 기법에 맞게 변형시켜 합성 네트워크에 적용한 보간 결과의 차이를 보였다. 실험결과는 기존 네트워크 대비 Vimeo90K 데이터셋에 대하여 PSNR 값이 0.63dB 개선됨을 보여준다.

  • PDF

노후 건축물 안전진단을 위한 AI기반 균열 구획화 알고리즘 (Artificial Intelligence-based Crack Segmentation Algorithm for Safety diagnosis of old buildings)

  • 서희주;황병일;김동주
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.13-14
    • /
    • 2023
  • 집중 안전 점검의 대상인 노후 건축물에서 균열은 건물의 안전도를 점검할 수 있는 지표이다. 안전 점검에 드론을 활용하면서 고해상도의 드론 기반 균열 이미지 수집이 가능해졌고, 육안이 아닌 AI기반으로 균열을 탐지, 구획화할 수 있다. 본 연구에서는 주변 사물과 배경에 구애받지 않고 안전 점검이 가능한 구획화 알고리즘을 제안한다. METU와 POC데이터셋을 가공하여 데이터셋을 구축하고, 이를 바탕으로 ResNet50을 통해 균열과 유사한 배경을 분류하였으며, 균열 구획화 모델을 선정하여 DesneNet201-UNet++으로 mIoU 82.27%를 달성하였다. 본 연구는 노후 건축물 안전 점검에 필요한 균열 폭 추정에 도움이 될 것으로 기대된다.

  • PDF

무인항공기와 딥러닝(UNet)을 이용한 소규모 농지의 밭작물 분류 (Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Classification Upland Crop in Small Scale Agricultural Land)

  • 최석근;이승기;강연빈;최도연;최주원
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.671-679
    • /
    • 2020
  • 경지면적의 작물 상황에 대한 모니터링 및 분석은 식량자급율을 높이기 위한 가장 중요한 요소이지만, 기존의 모니터링 방법은 노동 집약적이며 시간이 많이 들어 식량자급율을 높이기 위한 방안으로 그 활용성이 떨어진다. 이와같은 단점을 극복하기 위하여 국내에 다수 존재하고 있는 소규모 농지에서의 복합 작물 정보를 모니터링 하기위한 효율적인 방법을 개발할 필요가 있다. 본 연구에서는 복합작물의 분류 정확도를 높이기 위하여 무인항공기에서 취득된 RGB영상과 이를 이용한 식생지수를 딥러닝 입력데이터로 적용하고 복합 밭작물을 분류하였다. 각각의 입력데이터 분류 결과 RGB 영상을 이용한 분류는 전체정확도 80.23%, Kappa 계수 0.65가 나타났고, RGB영상과 식생지수를 이용한 방법의 경우 식생지수 3개(ExG,ExR,VDVI) 추가 데이터는 전체정확도 89.51%, Kappa 계수 0.80이며, 식생지수 6개(ExG,ExR,VDVI,RGRI,NGRDI,ExGR)는 90.35%, Kappa 계수 0.82로 분석되었다. 분류결과 RGB영상만을 이용한 방법에 비하여 식생지수를 추가한 결과 값이 비교적 높게 분석되었으며, 복합작물을 분류하는데 있어 식생지수를 추가한 데이터가 더 좋은 결과를 나타내었다.

SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지 (Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE)

  • 송창우;;정지훈;홍성재;김대희;강주형
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1579-1590
    • /
    • 2020
  • 본 논문에서는 고해상도의 위성영상을 활용하여 도시의 변화 양상을 분석하기 위하여 SPADE기반의 U-Net과 객체 영역기반 변화탐지 방법을 제안한다. 제안하는 네트워크는 기존의 U-Net에서 공간 정보를 잃지 않기 위해 SPADE를 사용했다. 고해상도 위성영상을 활용한 변화탐지 방법은 계획, 예측 등 다양한 도시 문제를 해결하기 위해 활용할 수 있다. IR-MAD 등 전통적인 방법인 화소 기반의 변화탐지를 수행할 경우, 다중 시기 영상 간의 기후, 계절 변화 등에 의해 화소의 변화가 민감하기 때문에 미변화 지역들이 변화 지역으로 오탐지될 가능성이 매우 크다. 이에 본 논문에서는 시계열 위성영상에서 도시를 구성하는 객체에 대한 변위를 정확하게 탐지하기 위해 도시를 구성하는 주요 공간 객체를 정의하고, 딥러닝 기반 영상 분할을 통해 추출한 후 영역 간의 변위 오차를 분석하여 변화탐지를 수행한다. 변화 양상을 분석하기 위한 공간 객체로 건축물, 도로, 농경지, 비닐하우스, 산림 영역, 수변 영역의 6개로 정의하였다. KOMPSAT-3A 위성영상으로 학습한 각 네트워크 모델을 시계열 KOMPSAT-3 위성영상에 대한 변화탐지를 수행한다. 객관적인 성능 평가를 위한 변화탐지 지표는 F1-score, Kappa를 사용한다. 제안하는 변화탐지 기법은 U-Net, UNet++ 대비 뛰어난 결과를 보이며, 평균 F1 score는 0.77, kappa는 77.29의 성능을 확인할 수 있다.

분포형 광섬유 센서 자료 적용을 위한 기계학습 기반 P, S파 위상 발췌 알고리즘 개발 (Machine Learning-based Phase Picking Algorithm of P and S Waves for Distributed Acoustic Sensing Data)

  • 최용규;송영석;설순지;변중무
    • 지구물리와물리탐사
    • /
    • 제25권4호
    • /
    • pp.177-188
    • /
    • 2022
  • 최근 이산화탄소 지중저장 모니터링 기술 중 하나인 미소진동 모니터링 기술에 대한 관심이 증가하면서 과거에 주로 사용되었던 지오폰이나 지진계가 아닌 분포형 광섬유 센서(distributed acoustic sensing, DAS)의 적용도 증가하고 있다. 특히 DAS를 이용하여 모니터링을 수행하면 시×공간적으로 거의 연속된 자료가 기록되게 되어 자료의 양이 방대해지게 되고 빠르고 정확한 자료 처리가 중요하게 된다. 자료처리 중 이벤트 탐지 및 위상 발췌는 가장 기초적인 과정으로 모든 자료에 대해 필수적으로 수행되어야 한다. 이 논문에서는 기계학습 기반의 P, S파 위상 발췌 알고리즘을 개발하여 전통적인 위상 발췌 방법의 한계를 보완하고, 전이학습 방법을 이용하여 신호 대 잡음비가 낮은 단일 성분 자료만 존재하는 DAS 자료에도 적용이 가능하도록 하였다. 사용된 기계학습 모델은 위상 발췌에 뛰어난 성능을 보이는 합성곱 신경망 기반의 EQTransformer를 ResUNet의 특성을 포함하도록 수정하여 구성하였다. 훈련자료는 전세계적으로 기록된 지진파형 자료인 STEAD자료를 이용하였고 학습 자료에 포함되지 않은 특성들에 대해서도 좋은 성능을 보이도록 기본 자료를 다양하게 변형시킨 자료도 학습에 사용하였다. 개발된 알고리즘은 학습자료와 다른 특성을 갖는 K-net 및 KiK-net 자료에 의해 성능이 검증되었다. 또한, 전이 학습을 통해 DAS 자료의 특성에 맞게 변형시킨 후 포항 장기분지에서 측정된 DAS자료에 적용시켜 그 성능을 검증하였다.

딥러닝을 이용한 DEMON 그램 주파수선 추출 기법 연구 (A study on DEMONgram frequency line extraction method using deep learning)

  • 신원식;권혁종;설호석;신원;고현석;송택렬;김다솔;최강훈;최지웅
    • 한국음향학회지
    • /
    • 제43권1호
    • /
    • pp.78-88
    • /
    • 2024
  • 수중 소음 측정이 가능한 수동 소나에 수신된 선박 방사소음은 Detection of Envelope Modulation on Noise(DEMON) 분석으로 얻은 선박 정보를 사용하여 선박 식별과 분류가 가능하다. 하지만 낮은 신호대잡음비(Signal-to-Noise Ratio, SNR) 환경에서는 DEMON 그램 내 선박 정보가 담겨있는 표적 주파수선을 분석 및 파악하는데 어려움이 발생한다. 본 논문에서는 낮은 SNR 환경에서 보다 정확한 표적 식별을 위해 딥러닝 기법 중 의미론적 분할을 사용하여 표적 주파수선들을 추출하는 연구를 수행하였다. SNR과 기본 주파수를 변경시키며 생성한 모의 DEMON 그램 데이터를 사용하여 의미론적 분할 모델인 U-Net, UNet++, DeepLabv3+를 학습 후 평가하였고, 학습된 모델들을 이용하여 캐나다 조지아 해협에서 측정한 선박 방사소음 데이터셋인 DeepShip으로 제작한 DEMON 그램 예측 성능을 비교하였다. 모의 DEMON 그램으로 학습된 모델을 평가한 결과 U-Net이 성능이 가장 높았으며, DeepShip으로 만든 DEMON 그램의 표적 주파수선을 어느 정도 추출할 수 있는 것을 확인하였다.

동역학적 홍수추적을 통한 대규모 유역에서의 천변저류지 최적조합의 결정 (Determination of Optimal Washland combination by Dynamic wave flood routing)

  • 박정훈;김민석;오병화;김중훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.292-296
    • /
    • 2010
  • 본 연구에서는 상대적으로 소규모 홍수저감시설인 천변저류지의 설치를 통하여 대규모 유역 하도 전체에서의 홍수위 저감효과를 평가하고 그 효율을 극대화 하는 방안을 제시하였다. 본 연구에 적용한 다목적 최적화 기법(Multi-objective Optimization)으로는 NSGA-II(Non-dominated Sorting Genetic Algorithm II) 알고리즘을 적용하였으며 천변저류지 설치에 따른 수위 영향구간 분석 및 유역 전체 하도구간에서 전반적으로 발생하는 수리, 수문학적인 변화 평가 및 천변저류지 최적 조합을 선정하기 위하여 천변저류지의 용량을 최소화하면서 하도 전 구간에서의 수위 저감량을 최대화할 수 있도록 최적화 알고리즘의 목적함수를 설정하였다. 천변저류지 설치에 따른 홍수량의 변화를 해석하기 위하여 안성천 유역에 대하여 동역학적 홍수추적을 수행하였으며 저류형 구조물의 설치에 따른 홍수량 저감효과 및 그에 따른 홍수위의 변화를 동시에 해석하기 위하여 UNET 모형을 기반으로 한 HEC-RAS 부정류 해석을 실시하였다. 천변저류지 조합별로 다양한 경우의 수가 존재하므로 HEC-RAS 구동 모듈인 HECRAS Controller를 Visual Basic으로 코딩된 최적화 알고리즘 프로그램과 연동함으로써 각 경우의 수별로 동역학적 홍수추적 및 부정류 해석을 실시함으로써 천변저류지 조합별 각 측점에서의 홍수량 및 홍수위를 산정하여 저류지 용량을 최소화하면서 각 하도 측점별 수위저감량을 최대화 하는 최적해 집단(Pareto Front)을 산정하여 제시하였다.

  • PDF