• Title/Summary/Keyword: ULOF

Search Result 13, Processing Time 0.019 seconds

Transient safety analysis of M2LFR-1000 reactor using ATHLET

  • Shen, Chong;Zhang, Xilin;Wang, Chi;Cao, Liankai;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • $M^2LFR-1000$ is a medium-power modular lead-cooled fast reactor, developed by University of Science and Technology of China (USTC), aiming at achieving a reactor design fulfilling the Gen IV nuclear system requirements and meanwhile emphasizing the optimum safety and economics. In order to evaluate the safety performance of $M^2LFR-1000$ reactor core, three typical transients are selected from initiating events, which are unprotected transient overpower (UTOP), unprotected loss of offsite power (ULOHS+ULOF) and increase of feedwater flowrate with primary pumps trip (IFW+PLOF). These three transients presented and discussed in this paper are performed with the code Analysis of THermal-hydraulics of LEaks and Transients (ATHLET), which is developed by Gesellschaft $f{\ddot{u}}r$ Anlagen-und Reaktorsicherheit gGmbH (GRS). The results indicate that the $M^2LFR$ is safe enough under these three transients due to the good inherent safety features of the reactor, without human intervention, the reactor will reach a new steady state under UTOP condition.

STATUS OF THE ASTRID CORE AT THE END OF THE PRE-CONCEPTUAL DESIGN PHASE 1

  • Chenaud, Ms.;Devictor, N.;Mignot, G.;Varaine, F.;Venard, C.;Martin, L.;Phelip, M.;Lorenzo, D.;Serre, F.;Bertrand, F.;Alpy, N.;Le Flem, M.;Gavoille, P.;Lavastre, R.;Richard, P.;Verrier, D.;Schmitt, D.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.721-730
    • /
    • 2013
  • Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase.

Analysis of the thermal-mechanical behavior of SFR fuel pins during fast unprotected transient overpower accidents using the GERMINAL fuel performance code

  • Vincent Dupont;Victor Blanc;Thierry Beck;Marc Lainet;Pierre Sciora
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.973-979
    • /
    • 2024
  • In the framework of the Generation IV research and development project, in which the French Commission of Alternative and Atomic Energies (CEA) is involved, a main objective for the design of Sodium-cooled Fast Reactor (SFR) is to meet the safety goals for severe accidents. Among the severe ones, the Unprotected Transient OverPower (UTOP) accidents can lead very quickly to a global melting of the core. UTOP accidents can be considered either as slow during a Control Rod Withdrawal (CRW) or as fast. The paper focuses on fast UTOP accidents, which occur in a few milliseconds, and three different scenarios are considered: rupture of the core support plate, uncontrolled passage of a gas bubble inside the core and core mechanical distortion such as a core flowering/compaction during an earthquake. Several levels and rates of reactivity insertions are also considered and the thermal-mechanical behavior of an ASTRID fuel pin from the ASTRID CFV core is simulated with the GERMINAL code. Two types of fuel pins are simulated, inner and outer core pins, and three different burn-up are considered. Moreover, the feedback from the CABRI programs on these type of transients is used in order to evaluate the failure mechanism in terms of kinetics of energy injection and fuel melting. The CABRI experiments complete the analysis made with GERMINAL calculations and have shown that three dominant mechanisms can be considered as responsible for pin failure or onset of pin degradation during ULOF/UTOP accident: molten cavity pressure loading, fuel-cladding mechanical interaction (FCMI) and fuel break-up. The study is one of the first step in fast UTOP accidents modelling with GERMINAL and it has shown that the code can already succeed in modelling these type of scenarios up to the sodium boiling point. The modeling of the radial propagation of the melting front, validated by comparison with CABRI tests, is already very efficient.