DOI QR코드

DOI QR Code

Transient safety analysis of M2LFR-1000 reactor using ATHLET

  • Shen, Chong (Department of Engineering and Applied Physics, University of Science and Technology of China) ;
  • Zhang, Xilin (Department of Engineering and Applied Physics, University of Science and Technology of China) ;
  • Wang, Chi (Department of Engineering and Applied Physics, University of Science and Technology of China) ;
  • Cao, Liankai (Department of Engineering and Applied Physics, University of Science and Technology of China) ;
  • Chen, Hongli (Department of Engineering and Applied Physics, University of Science and Technology of China)
  • Received : 2018.02.27
  • Accepted : 2018.08.29
  • Published : 2019.02.25

Abstract

$M^2LFR-1000$ is a medium-power modular lead-cooled fast reactor, developed by University of Science and Technology of China (USTC), aiming at achieving a reactor design fulfilling the Gen IV nuclear system requirements and meanwhile emphasizing the optimum safety and economics. In order to evaluate the safety performance of $M^2LFR-1000$ reactor core, three typical transients are selected from initiating events, which are unprotected transient overpower (UTOP), unprotected loss of offsite power (ULOHS+ULOF) and increase of feedwater flowrate with primary pumps trip (IFW+PLOF). These three transients presented and discussed in this paper are performed with the code Analysis of THermal-hydraulics of LEaks and Transients (ATHLET), which is developed by Gesellschaft $f{\ddot{u}}r$ Anlagen-und Reaktorsicherheit gGmbH (GRS). The results indicate that the $M^2LFR$ is safe enough under these three transients due to the good inherent safety features of the reactor, without human intervention, the reactor will reach a new steady state under UTOP condition.

Keywords

References

  1. IAEA, Liquid metal coolants for fast reactors cooled by sodium, lead, and leadbismuth eutectic. Nuclear energy series No. NP-T-1.6, International Atomic Energy Agency, Vienna, 2012.
  2. GIF Policy Group, Technology Roadmap Update for Generation IV Nuclear Energy Systems, The OECD Nuclear Energy Agency for the Generation IV International Forum, 2014.
  3. A. Alemberti, The lead fast reactor: an opportunity for the future? Engineering 2 (2016) 59-62, https://doi.org/10.1016/J.ENG.2016.01.022.
  4. H.U. Wider, J. Carlsson, E. Loewen, Renewed interest in lead cooled fast reactors, Prog. Nucl. Energy 47 (2005) 44-52, https://doi.org/10.1016/j.pnucene.2005.05.003.
  5. L. Cinotti, C.F. Smith, H. Sekimoto, L. Mansani, M. Reale, J.J. Sienicki, Leadcooled system design and challenges in the frame of Generation IV International Forum, J. Nucl. Mater. 415 (2011) 245-253, https://doi.org/10.1016/j.jnucmat.2011.04.042.
  6. A.V. Zrodnikov, G.I. Toshinsky, O.G. Komlev, V.S. Stepanov, N.N. Klimov, SVBR-100 module-type fast reactor of the IV generation for regional power industry, J. Nucl. Mater. 415 (2011) 237-244, https://doi.org/10.1016/j.jnucmat.2011.04.038.
  7. A.G. Glazov, V.N. Leonov, V.V. Orlov, A.G. Sila-Novitskii, V.S. Smirnov, A.I. Filin, V.S. Tsikunov, Brest reactor and plant-site nuclear fuel cycle, At. Energy. 103 (2007) 501-508, https://doi.org/10.1007/s10512-007-0080-5.
  8. C.F. Smith, W.G. Halsey, N.W. Brown, J.J. Sienicki, A. Moisseytsev, D.C. Wade, SSTAR: the US lead-cooled fast reactor (LFR), J. Nucl. Mater. 376 (2008) 255-259, https://doi.org/10.1016/J.JNUCMAT.2008.02.049.
  9. Z. Wenlong, X. Hushan, Advanced fission energy program - ADS transmutation system, Bull. Chin. Acad. Sci. 27 (2012) 375-381. https://doi.org/10.3969/j.issn.1000-3045.2012.03.017
  10. X. Guoqing, X. Hushan, W. Sicheng, HIAF and CiADS national research facilities: progress and prospect, Nucl. Phys. Rev. 34 (2017) 275-283, https://doi.org/10.11804/NuclPhysRev.34.03.275.
  11. H. Chen, Z. Chen, C. Chen, X. Zhang, H. Zhang, P. Zhao, K. Shi, S. Li, J. Feng, Q. Zeng, Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100, Int. J. Hydrogen Energy 41 (2016) 7158-7168, https://doi.org/10.1016/J.IJHYDENE.2016.01.101.
  12. H. Chen, X. Zhang, Y. Zhao, L. Cao, K. Shi, H. Fang, C. Shen, H. Zhang, Q. Zeng, A Medium-power Modular Lead-cooled Fast Reactor M2LFR-1000 emphasizing application of optimization methods in preliminary design, in: The 8th Korea-China Workshop on Nuclear Reactor Thermal-Hydraulics (WORTH-8), Yeosu, Korea, Oct.22-24, 2017.
  13. G. Lerchl, H. Austregesilo, P. Sch€offel, D. von der Cron, F. Weyermann, ATHLET User'S Manual, Gesellschaft fur Anlagenund Reaktorsicherheit (GRS) gGmbH, 2016.
  14. S. Palazzo, K. Velkov, G. Lerchl, K. Van Tichelen, Analyses of the MYRRHA spallation loop using the system code ATHLET, Ann. Nucl. Energy 60 (2013) 274-286, https://doi.org/10.1016/j.anucene.2013.05.010.
  15. R.O. Scarlat, M.R. Laufer, E.D. Blandford, N. Zweibaum, D.L. Krumwiede, A.T. Cisneros, C. Andreades, C.W. Forsberg, E. Greenspan, L.-W. Hu, P.F. Peterson, Design and licensing strategies for the fluoride-salt-cooled, high-temperature reactor (FHR) technology, Prog. Nucl. Energy 77 (2014) 406-420, https://doi.org/10.1016/J.PNUCENE.2014.07.002.
  16. S. Kangli, Preliminary Research on Initial Events and Transient Safety Characteristic of Lead-cooled Fast Reactor, MA. Thesis, University of Science and Technology of China, 2017.
  17. K. Mikityuk, Heat transfer to liquid metal: review of data and correlations for tube bundles, Nucl. Eng. Des. 239 (2009) 680-687, https://doi.org/10.1016/j.nucengdes.2008.12.014.
  18. J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, A review of the thermophysical properties of MOX and UO2 fuels, J. Nucl. Mater. 299 (2001) 181, https://doi.org/10.1016/S0022-3115(01)00692-4.
  19. N.E. Agency, Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal- hydraulics and technologies, Nucl. Sci. (2015) 647-730. ISBN 978-92-64-99002-9.
  20. E. Bubelis, Plant Data for the Safety Analysis of the Industrial LFR (ELFR), No.TEC 068-2011, Karlsruher Institut fur Technologie, Karlsruhe, 2012.
  21. Z. Chen, G. Zhou, P. Zhao, H. Chen, Development and application of a thermalhydraulics analysis code for small modular natural circulation lead or leadalloy cooled fast reactors, Ann. Nucl. Energy 73 (2014) 68-74, https://doi.org/10.1016/j.anucene.2014.06.031.
  22. G. Bandini, M. Polidori, Report on the Results of Analysis of DEC Events for the ETDR(ALFRED), No.DEL022-2013, European Nuclear Energy Agency, Rome, 2013.
  23. M. Schikorr, E. Bubelis, B. Carluec, J. Champigny, Assessment of SFR reactor safety issues. Part I: analysis of the unprotected ULOF, ULOHS and UTOP transients for the SFR(v2b-ST) reactor design and assessment of the efficiency of a passive safety system for prevention of severe accidents, Nucl. Eng. Des. 285 (2015) 249-262, https://doi.org/10.1016/j.nucengdes.2014.10.015.

Cited by

  1. Codes of new generation for safety justification of power units with a closed nuclear fuel cycle developed for the “PRORYV” project vol.6, pp.3, 2019, https://doi.org/10.3897/nucet.6.54710