• Title/Summary/Keyword: UIC

Search Result 171, Processing Time 0.029 seconds

Test and evaluation on the suitability of operating high speed train in electrified conventional line through test run of HSR-350x (한국형 고속열차를 활용한 기존선 전철화 구간에서 고속열차 운행의 적합성 평가)

  • Mok, Jin-Yong;Kim, Young-Guk;Kim, Ki-Hwan;Cho, Min-Young
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.229-235
    • /
    • 2007
  • The KTX, which have opened the revenue service in April 2004, is operating in Kyoung-Bu high-speed line and electrified conventional Ho-Nam line, and the more the electrification are enlarged, the more the requirement of operating of high speed train would be increased. In this paper, the result of test run and evaluation on the suitability of operating high speed train in electrified conventional line between Dae-jeon and East Dae-gu was reviewed. Evaluation and analysis was executed in specific categories, such as operation & running performance of the train considering vibration characteristics based on UIC 518, ride comfort and current collection, and response sensitivity of ATS device for signalling from track facility. The result of this running test was evaluated and considered as a good practice for revenue operation of high speed train in electrified conventional line between Dae-jeon and Dae-gu.

  • PDF

Study on the Establishment of Rail Grinding Criteria of High-Speed Railway Lines Considering the KTX Operation Circumstances (KTX 운행현황을 고려한 고속선 레일 연마 기준 정립에 대한 연구)

  • Kim, Man-Cheol;Kang, Tae-Ku
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.377-385
    • /
    • 2007
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were analyzed for metallographic structure and tested for the hardness. By analyzing the test results to the factors affecting the RCF causing the defects of rail surface, the study suggested the rail grinding criteria of the domestic high speed railway lines. As the factors affecting RCF, passing tonnage, running speed and track condition are considered.

  • PDF

The Running Test of the Developed Bogie on the Roller Rig for Korean High Speed Train (한국형 고속전철용 개발대차의 주행시험대에서 주행성능평가)

  • 정훈;김진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.218-221
    • /
    • 2004
  • This Research is to test the running stability of the developed bogie with 350km/h of which conventional speed is faster than Korea TGV 300Km/h. The running stability test has been executed in status of a car with the developed bogie on the roller rigger to adjust similar to the actual condition. And the test has been done in the two rail conditions, i.e. excitation and non-excitation, respectively. Running speed of bogie increased by the roller step by step. In consequence, the developed bogie in the non-excitation has run without any unstable point for 400kn0h. Vibration characteristics of carbody also was within the value specified on the UIC 518.

  • PDF

Comparison on Evaluations of Ride Comfort for Railway (철도 승차감 평가방법의 비교 및 고찰)

  • Kim, Y.K.;Koo, D.H.;Na, H.S.;Park, C.S.;Choi, K.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1784-1789
    • /
    • 2000
  • Recently "ride comfort" problem becomes increasingly important because of today's needs for train speedup. The concept of term "ride comfort" is equivocal. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But each of them recommends the different assessment method and the different guidance. So users must review whether they can apply it to their system or not. In general, the evaluation methods defined in the standards - ISO 2631, UIC 513 R, and Ride Index suggested by Sperling - have been used in the railroad. We performed the ride comfort test in KNR line(Seoul - Kwangju) and simulated the relationship between them. And we compared our results to ERRI's.

  • PDF

Design improvement and test and evaluation of aluminium carbody of korea high speed rolling stock (한국형 고속전철 시제차량용 알루미늄차체 설계개선 및 시험평가)

  • 이병현;정경렬;박형순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.154-159
    • /
    • 2003
  • In this paper, the design improvement for high speed train carbody, which made by aluminium alloy, was described. The design improvements was achieved in fields of economical efficiency, extrusion, welding, assembling, etc. This paper also describes the result of carbody test. The purpose of the test is to evaluate an safety under the load and operation condition. This strength test based on KTX and reference code is UIC 566 and JIS E 7105. The test results shows that aluminium carbody structural have enough strength for all part.

  • PDF

A Study on Curve Running Characteristic of DMT Freight (DMT 화차의 곡선부 주행특성에 관한 연구)

  • Lee, Seung-Il;Eom, Beom-Gyu;Lee, Hi-Sung;Lee, Young-Yeob;Kim, Yong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.373-380
    • /
    • 2010
  • An interest is increased of environment and energy so, importance on railroad high energy efficiency is magnified. And after Gyeong-bu High speed rail is completed, share rate freight transportation of railroad is expected to be gradually increased due to expand investment for railroad and operate mainly freight transportation on convention line. Therefore a research on DMT freight cars is necessary under like this situation. In paper, we developed analysis model for DMT freight car and DMT freight was analyzed numerically using VI-Rail in each condition of railway having different curve and carried out vibration analysis on curving using developed analysis model. And we carried out test on driving stability follow changing curve radius then measure against UIC code 518.

Application of statistical method for ride evaluation of high speed train (고속철도 승차감 평가에 통계적 기법의 적용)

  • Kim, Young-Guk;Park, Chan-Kyeoung;Ahn, Sung-Kwon;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2179-2184
    • /
    • 2008
  • The ride comfort is more important according to train speedup. Generally it is defined as the vehicle vibration. There are many studies on evaluation method of ride comfort for railway. But the ride comfort for Korean high speed train(HSR 350x) has been assessed by statistical method according to UIC 513R. In this paper, the ride indices, which are measured in the Korean high speed train, have been analyzed and reviewed by appling the statistical methodology such as t-test, variance analysis(ANOVA) and regression analysis.

  • PDF

Stress Analysis of Bogie frame adopting rectangular tube shaped transom (사각 단면 형상 트랜섬을 적용한 대차프레임 구조해적)

  • 이광일
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.60-66
    • /
    • 1999
  • Generally, bogie frame for EMU consists of side frame, crossbeam and transom. Among the main frame structure which has been produced in our company, crossbeam and transom have been made of circular shaped tube. In this un, welding process between circular crossbeam and circular transom is complicated and takes much time. To improve this problem, new rectangular tube shaped transom is adopted. In this paper, the processes and results of finite element analysis are described, which was carried out to evaluate the strength of new bogie frame according to UIC, JIS, KS code. FEA results show that the new bogie frame has sufficient static and fatigue strength. Comparing the FEA results with load test results should follow and further study for evaluating the fatigue strength will be pursued in future.

  • PDF

A Study on the Multiaxial Fatigue Analysis of Bogie Frame for High Speed Train (고속전철용 대차프레임의 다축피로해석에 관한 연구)

  • 이상록;이학주;한승우;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.344-351
    • /
    • 1999
  • Stress analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC (International Union of Railways) Code 615-4. Multiaxial fatigue damage models such as signed von Mises method and typical critical plane theories were reviewed, and multiaxial fatigue analysis program (MUFAP) has been developed. Fatigue analysis of bogie frame under multiaxial loading was performed by using MUFAP and finite element analysis results. The procedure developed in this study is considered to be useful for the life prediction in preliminary design stage of railway components under multiaxial loading conditions. 3-dimensional surface modeling, mesh generation and finite element analysis were performed by Pro-Engineer, MSC/PATRAN and MSC/NASTRAN, respectively, which were installed in engineering workstation.

  • PDF

Influence of Slab Length on behavior of Floating Slab Track by Rail-slab-isolator Longitudinal Interaction

  • Nguyen, Huan Ha;Jang, Seung Yup;Chung, Wonseok
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.163-166
    • /
    • 2012
  • Many different types of floating slab track have been developed and installed around the world to reduce vibrations and noise originating in the surrounding environment. The main objective of this study is to examine the influence of slab length on behavior of floating slab track based on rail-slab-isolator interaction. The floating slab track is modeled by the connection between rail, slab, isolator, and slab mat in the transition zone. All elements were assembled in a simplified two-dimensional (2D) finite element model (FEM). The maximum length of FST is then investigated based on the maximum additional rail stress criterion as described in UIC 774-3R since no fully accepted design criteria for the slab length in FST systems currently exist.