• Title/Summary/Keyword: UHPC

Search Result 216, Processing Time 0.026 seconds

Reduction of Superplasticizer Dosage in Eco-friendly Ultra-high Performance Concrete by Adopting Industrial by-Products (산업부산물들 혼입에 의한 친환경 초고성능 콘크리트의 유동화제 사용량 감소)

  • Kim, Heeae;Pyo, Sukhoon;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.20-28
    • /
    • 2016
  • Assessment on adequate dosage of superplasticizer in eco-friendly ultra-high performance concrete (UHPC) containing industrial by-products was carried out from the standpoint of workability. Various types of industrial by-products, including blast-furnace slag, coal bottom ash and rapid-cooled electric arc furnace oxidizing slag, were utilized, and the effects of dosage of superplasticizer on the workability and strength of UHPC containing the by-products were evaluated. By utilizing the by-products, the workability of UHPC was improved and required dosage of superplasticizer was reduced. In addition, the material cost for UHPC with by-products was decreased due to reduced dosage of superplasticizer.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders (강섬유 보강 초고성능 콘크리트 프리스트레스트 거더의 휨거동 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.777-786
    • /
    • 2010
  • This paper examines the flexural behavior of full-scale prestressed concrete girders that were constructed of steel fiber reinforced ultra high performance concrete (UHPC). This study is designed to provide more information about the bending characteristics of UHPC girders in order to establish a reasonable prediction model for flexural resistance and deflection for future structural design codes. Short steel fibers have been introduced into prestressed concrete T-girders in order to study their effects under flexural loads. Round straight high strength steel fibers were used at volume fraction of 2%. The girders were cast using 150~190 MPa steel fiber reinforced UHPC and were designed to assess the ability of steel fiber reinforced UHPC to carry flexural loads in prestressed girders. The experimental results show that steel fiber reinforced UHPC enhances the cracking behavior and ductility of beams. Moreover, when ultimate failure did occur, the failure of girders composed of steel fiber reinforced UHPC was observed to be precipitated by the pullout of steel fibers that were bridging tension cracks in the concrete. Flexural failure of girders occurred when the UHPC at a particular cross section began to lose tensile capacity due to steel fiber pullout. In addition, it was determined that the level of prestressing force influenced the ultimate load capacity.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.

Shear strength prediction for SFRC and UHPC beams using a Bayesian approach

  • Cho, Hae-Chang;Park, Min-Kook;Hwang, Jin-Ha;Kang, Won-Hee;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.503-514
    • /
    • 2020
  • This study proposes prediction models for the shear strength of steel fiber reinforced concrete (SFRC) and ultra-high-performance fiber reinforced concrete (UHPC) beams using a Bayesian parameter estimation approach and a collected experimental database. Previous researchers had already proposed shear strength prediction models for SFRC and UHPC beams, but their performances were limited in terms of their prediction accuracies and the applicability to UHPC beams. Therefore, this study adopted a statistical approach based on a collected database to develop prediction models. In the database, 89 and 37 experimental data for SFRC and UHPC beams without stirrups were collected, respectively, and the proposed equations were developed using the Bayesian parameter estimation approach. The proposed models have a simplified form with important parameters, and in comparison to the existing prediction models, provide unbiased high prediction accuracy.

An Experimental study on bonding performance evaluation of Bi-compressive strength concrete according to surface preparation (접착 면 처리 방법에 따른 이종 압축강도 콘크리트의 접착성능 평가에 관한 실험적 연구)

  • Kim, Min-Seong;Lim, Hee-Seob;Lee, Han-Seung;Yang, Won-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.282-283
    • /
    • 2014
  • An active study on UHPC, which has been recently used in high-rise building and bridges, is in progress. However, research on adhesion strength of normal concrete and UHPC is required to be studied due to the lack of information. In this study, experimental research progress for adhesion strength (shear strength of adhesive surface) evaluation of Bi-compressive strength concretes (UHPC, Normal concrete) is proceeded. First, specimens using glue are produced and surface treatment methods of concrete bonded section are considered. Second, Direct Shear test is applied on concrete bonded section of UHPC (80~180MPa) and Normal Concrete (NC). As a result of this study, it is confirmed that bond strength is deteriorated as the difference of intensity ration of NC and UHPC increases.

  • PDF

Recent Advances in Ultra-high Performance Concrete

  • Kim, Yail J.
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.163-172
    • /
    • 2013
  • This paper presents a comprehensive review of recent advances in ultra-high performance concrete (UHPC). Fundamental characteristics of UHPC are elaborated with focus on its material constituents, mixing, and formulation procedures. Use of state-of-the-art materials such as carbon nanotubes or nano-silica is discussed as well, whose inclusion may enhance the performance of UHPC. The review evaluates supplementary treatment methods (e.g., pressuring curing) and identifies applicable standard test methods for determining the properties and behavior of UHPC. Site implementation is provided to link laboratory research with full-scale application. Research needs are suggested to further develop UHPC technologies from technical and socio-economical perspectives.

Study on Construction Example of Free Formed Curved Facade using External UHPC Panels -Focused on the Remodeling Construction of Samsung-dong KEB Hana Bank - (UHPC 외장패널을 활용한 비정형 곡면 파사드의 시공사례에 대한 연구 - 삼성동 KEB 하나은행 리모델링 공사 -)

  • Park, Young-Mi;Kim, Hye Won;Park, Ki-Hong;Kim, Sung-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.62-63
    • /
    • 2017
  • According to the rapid development of digital technology, the free formed buildings with complex and various curved surfaces are being constructed. Most of the external cladding of free formed buildings have been applied materials such as metal, glass, FRP, GFRC, etc. However, these materials have many disadvantages such as a complicated manufacturing process for realizing 3D irregular shape and an increase in production period and cost. Therefore, the studies for UHPC which is an optimized material for overcoming this problem for a long time in overseas. This study reviewed the remodeling construction of Samsung-dong KEB Hana Bank appling the exterior curved UHPC panel for the first time in Korea. As a result, we confirmed the possibility of UHPC panels with various free formed shapes.

  • PDF

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

Analysis of circular steel tube confined UHPC stub columns

  • Hoang, An Le;Fehling, Ekkehard
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The use of ultra high performance concrete (UHPC) in composite columns offers numerous structural benefits, and has received recent research attention. However, the information regarding the behavior of steel tube confined concrete (STCC) columns employing UHPC has been extremely limited. Thus, this paper presents an overview of previous experimental studies on circular STCC columns with taking into account various concrete strengths to point out their distinctive features. The effect of the confinement factor and the diameter to thickness ratio on both strength and ductility in circular STCC columns employing UHPC was investigated. The applicability of current design codes such as EC4, AISC, AIJ and some available analytical models for concrete confined by steel tube was also validated by the comparison of ultimate loads between the prediction and the test results of Schneider (2006) and Xiong (2012). To predict the stress-strain curves for confined UHPC in circular STCC stub columns, a simplified model was proposed and verified by the comparison with experimental stress-strain curves.

Machine Learning Based Strength Prediction of UHPC for Spatial Structures (대공간 구조물의 UHPC 적용을 위한 기계학습 기반 강도예측기법)

  • Lee, Seunghye;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.111-121
    • /
    • 2020
  • There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.