• Title/Summary/Keyword: UHMWPe 폴리에틸렌

Search Result 46, Processing Time 0.024 seconds

Ballistic Analysis and Stacking Sequence of Laminate Plate for Enhancing Bulletproof Performance (방탄 성능 향상을 위한 적층 평판의 피탄 해석 및 적층 배열 연구)

  • Ki Hyun Kim;Min Kyu Kim;Min Je Kim;Myung Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.331-338
    • /
    • 2023
  • Modern bulletproof armor must be light and have excellent penetration resistance to ensure the mobility and safety of soldiers and military vehicles. The ballistic performance of heterogeneous structures of laminated flat plates as bulletproof armor depends on the arrangement of constituent materials for the same weight. In this study, we analyze bulletproof performance according to the stacking sequence of laminated bulletproof armor composed of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam. A ballistic analysis was performed by colliding a 7.62 × 51 mm NATO cartridge's M80 bullet at a speed of 856 m/s with six lamination arrangements with constituent materials thicknesses of 5 mm and 6.5 mm. To evaluate the bulletproof performance, the residual speed and residual energy of the projectile that penetrated the heterogeneous laminated flat plates were measured. Simulation results confirmed that the laminated structure with a stacking sequence of Kevlar, ultra-high molecular weight polyethylene, and ethylene-vinyl-acetate foam had the best bulletproof performance for the same weight.

Effect of Gamma-Irradiation Sterilization on the Creep and Wear of Ultra-High Molecular Weight Polyethylene (감마선 멸균처리가 초고분자량 폴리에틸렌의 크리프와 마모에 미치는 영향)

  • Lee, Kwon-Yong;Lee, Soo-Cheol;Lee, Keun-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.90-91
    • /
    • 1998
  • The influence of gamma-irradiation sterilization on the creep and wear performance of ultra-high molecular weight polyethylene (UHMWPE) was investigated by conducting the dynamic compressive creep tests and pin-on-disc sliding wear tests. The changes of microstructure property, relative crystallinity, oxidation index, percent crosslinking, were also measured and the relationship between these and creep and wear results was discussed.

  • PDF

Dyeing of Ultra High Molecular Weight Polyethylene Fiber Using Anthraquinoid Super-hydrophobic Navy Dyes (안트라퀴논계 초소수성 네이비 염료를 이용한 초고분자량 폴리에틸렌 섬유의 염색)

  • Kim, Taekyeong;Ma, Heejung
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.98-106
    • /
    • 2019
  • The dyeability and fastness properties of super-hydrophobic navy dyes having different length of alkyl groups were investigated on ultra high molecular weight polyethylene fabrics. Those dyes exhibited strong color strength in the wavelength of mainly 550~650nm, which meant that they were navy color. From the results accomplished under various dyeing conditions, it can be concluded that those dyes have higher affinity on the fibers at $130^{\circ}C$ than at the lower dyeing temperature. Considering processing time and thermal damage of the fibers, one hour is good enough to obtain full strength of color. Maximum color strength was obtained at 2~3%owf of pure dyes. Except for the rub fastness under dry condition, all fastness such as to washing and light showed as good as of 4~5 ratings.

인공관절의 수명 향상을 위해 PIII&D (Plasma Immersion Ion Implantation & Deposition) 기술로 제조된 인공관절용 NbN 박막의 마모 특성 평가

  • Park, Won-Ung;Jeon, Jun-Hong;Mun, Seon-U;Choe, Jin-Yeong;Im, Sang-Ho;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.189-189
    • /
    • 2011
  • 인공관절은 노인성 질환이나 자가 면역질환, 신체적인 외상 등으로 인하여 발생하는 관절의 손상 부위를 대체하기 위해 고안된 관절의 인공 대용물이다. 인공 관절 중 인공 고관절의 경우 관절 운동을 하는 라이너(Liner)와 헤드(Head) 부분이 인공관절의 수명을 결정하게 되는데, 헤드 부분에 메탈소재와 라이너 부분에 고분자 소재를 사용하는 MOP (metal on polymer) 구조의 인공관절은 충격흡수의 장점이 있는 반면 wear debris에 의한 골용해로 인하여 관절이 느슨해지는 문제점이 발생하여 재 시술의 주요 원인이 되고 있다. 또한 메탈 헤드의 마모로 인한 금속이온의 용출은 세포 독성의 문제를 야기하여 인공관절의 수명을 낮추는 또 하나의 요인이 되고 있다. 따라서 인공관절의 수명을 늘리기 위해 DLC, ZrO, TiN 등의 높은 경도 값을 갖는 박막을 금속 헤드 위에 증착하여 상대재인 인공관절용 고분자 소재의 마모량을 줄이고자 하는 연구가 활발하게 진행 되고 있다. 본 연구에서는 PIII&D (Plasma Immersion Ion Implantation & Deposition)공정을 이용하여 Co-Cr-Mo 합금 소재 niobium nitride (NbN) 박막을 증착하여 상대제인 UHMWPE (ultra high molecular polyethylene)의 마모를 줄이고자 하는 연구를 진행하였다. 마모량을 감소시키기 위하여, 박막 증착전에 질소를 이온주입하는 pre-ion implantation 공정을 도입하였으며, 또한 Co-Cr 합금과 NbN박막 사이의 접착력을 증가시키기 위하여 박막의 증착 초기에 이온주입과 증착을 동시에 수행하는 dynamic ion mixing공정을 수행하였다. NbN 박막의 특성을 평가하기 위해 XRD, XPS, AFM 등의 분석을 수행하였으며, 상대재인 초고분자량 폴리에틸렌의 마모량을 측정하기 위해 Pin-on-disk tester를 이용하여 마모 실험을 진행하였다. 마모 실험 결과, pre-ion implantation 공정을 도입한 경우 현재 상용화 되어있는 Co-Cr 합금에 비하여 마모량을 2배 이상 감소시키는 것을 확인 할 수 있었으며, dynamic ion mixing 공정을 도입한 경우 장시간의 마모 시험에 대한 마모 특성이 향상 되는 것을 확인 할 수 있었다.

  • PDF

Hemiarthroplasty for Osteosarcoma of Proximal Tibia (근위 경골의 골육종에 시행한 반관절성형술)

  • Jeon, Dae-Geun;Cho, Wan-Hyeong;Kim, Jin-Wook-;Koh, Han-Sang
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.12 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Purpose: The proximal tibial sarcoma patients, especially in their growing ages have problems of reconstruction. This study is to devise a methodology which can circumvent this limitations. Materials and Methods: Four cases of proximal tibial osteosarcoma underwent hemiarthroplasty. The mean age was 13 years (11~15) with a mean follow-up of 64 months (47~89). The procedure consists of ultrahigh molecular weight polyethylene (UHMWPE) liner as an substitute for the joint surface and this piece was fixed to the remaining tibial bone stock with Ender nail and bone cement. Results: Final functional score was 23.5 (78.3% of control) by MSTS criteria. All the cases showed stable joint without pain. Hemiarthroplasty related complications were absent. By saving the femoral physis, expected leg length discrepancy could be minimized by this procedure. Conclusions: Hemiarthroplasty of proximal tibia can be an option in pediatric sarcoma patients.

  • PDF

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.