• Title/Summary/Keyword: UHMWPE powder

Search Result 4, Processing Time 0.021 seconds

Tribological and Mechanical Properties of UHMWPE/HDPE Composites

  • Na, Woo Seok;Lee, Kwang Ho;Kong, Tae Woong;Baek, Jung Youn;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.234-238
    • /
    • 2018
  • The influence of reinforcing UHMWPE powder on the tribological and mechanical properties of HDPE was investigated. The circularizing of UHMWPE powder was improved by high-speed rotation to enhance particle distribution and flowability. HDPE composites reinforced with UHMWPE powder in the range of 0-50 wt% were prepared by co-rotating twin screw extrusion. The abrasion resistance, plane friction coefficient, tensile strengths, and impact strengths of the composites were investigated as a function of the UHMWPE content. An increasing UHMWPE content decreased the plane friction coefficient and increased the abrasion resistance and impact strength. It is expected that HDPE composites reinforced with spherical UHMWPE powder particles can be used to improve the durability of products such as pipes in the future.

Surface and Chemical Properties of Surface-Modified UHMWPE Powder and Mechanical and Thermal Properties of Its Impregnated PMMA Bone Cement V. Effect of Silane Coupling Agent on the Surface Modification of UHMWPE Powder

  • Yang Dae Hyeok;Yoon Goan Hee;Shin Gyun Jeong;Kim Soon Hee;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.120-127
    • /
    • 2005
  • Conventional poly(methyl methacrylate) (PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature ($above 100^{\circ}C$) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene (UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups (3-amino propyltriethoxysilane ($TSL 8331^{R}$) and N-(2-aminoethyl)-3-(amino propyltrimethoxysilane) ($TSL 8340^{R}$)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing $3 wt\%$ of the UHMWPE powder surface-modified with various ratios of $TSL 8331^{R}$ and $TSL 8340^{R}$ were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.

Effect of Mixing Process on the Wear Properties of UHMWPE/Kaolin Composite (입자충전 초고분자량 폴리에틸렌의 마모특성 : 입자충전 방법의 효과)

  • Ki, Nam;Lee, Geon-Woong;Yoon, Ho-Gyu;Park, Hong-Jo;Kwak, Soon-Jong;Kim, Jun-Kyung;Park, Min
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • In this study the wear behavior of ultra high molecular polyethylene (UHMWPE) filled with kaolin particles by different methods was investigated. UHMWPE/kaolin composites were prepared by two different methods: polymerization-filling and powder mixing. Particularly in a powder mixing method. Particle dispersion and wear property according to powder mining method were examined. It was found from wear test that filling of inorganic filler into UHMWPE by polymerization filling was more effective way than by powder mixing method in improving Wear resistance of UHMWPE. It was also confirmed that abrasive wear was dominant wear mechanism and particle dispersion in the composite as well as interface property was an important factor in controlling the wear behavior of the resulting composites.

Surface and Chemical Properties of Surface-modified UHMWPE Powder and Mechanical Properties of Self Curing PMMA Bone Cement Containing UHMWPE Powder I. Effect of MMA/Xylene Contents on Surface Modification of UHMWPE (표면개질된 초고분자량 폴리에틸렌 분말의 표면과 화학적 특성 및 이를 함유하는 상온 경화용 폴리(메틸 메타크릴레이트) 뼈 시멘트의 기계적 특성 I. 메틸 메타크릴레이트/자일렌 함량에 따른 초고분자량 폴리에틸렌의 표면 개질 효과)

  • 양대혁;윤관희;김순희;이종문;강길선
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2004
  • It has been widely used ultra high molecular weight polyethylene (UHMWPE) for the biomaterials due to its excellent mechanical properties and biocompatibility. In the case of blend of UHMPE with another polymeric biomaterials, however, UHMWPE might have low blend compatibility due to surface inertness. In this study, in order to improve the mechanical properties of poly(methyl methacrylate) (PMMA) bone cement by means of the impregnation of UHMWPE powder, we developed the novel surface modification method by the mixture of methyl methacrylate (MMA) and xylene. We investigated the variation of composition of MMA/xylene. It was confirmed by the analysis of Fourier transform infrared-attenuated total reflectance, scanning electron microscope, universal transverse mercator, and digital thermometer. The maximum mechanical strength of surface modified UHMWPE powder impregnated PMMA bone cement compound was observed the ratio of 1 : 1 (v/v%) MMA/xylene. Also its curing temperature decreased from 103 $^{\circ}C$ to 58 ∼ 73 $^{\circ}C$ The mechanism of surface modification of UHMWPE powder by the mixture of MMA/xylene has been proposed.