• 제목/요약/키워드: UHMWPE fiber

검색결과 12건 처리시간 0.024초

고밀도 폴리에틸렌/초고분자량 폴리에틸렌 블렌드로 제조한 미세다공성 중공사막 (Microporous Bellow Fiber Membrane Prepared from High Density Polyethylene/Ultra High Molecular Weight Polyethylene Blend)

  • 남주영;최승은;이광희;장문석;김진호;임순호
    • 폴리머
    • /
    • 제27권4호
    • /
    • pp.307-312
    • /
    • 2003
  • 고밀도 폴리에틸렌 (HDPE)과 초고분자량 폴리에틸렌 (UHMWPE)을 혼합하여 중공사막을 제조하고, 이의 형태구조와 물성 변화를 조사하였다. 분자량 측정과 FT-IR을 이용한 분석 결과, 상품화된 중공사막(Sterapore)은 고분자량의 HDPE로 제조되었으며, 표면은 친수성 고분자인 비닐 알코올/비닐 아세테이트 공중합체로 코팅되어 높은 수투과도를 갖는 이유를 규명하였다. HDPE/UHMWPE 블렌드에서 UHMWPE의 혼합 한계 조성비는 10 wt% 이하이며, UHMWPE의 분산성을 높이기 위하여 혼합과정에서 광유를 도입하여야 할 것으로 판단되었다. 제조된 HDPE/UHMWPE 블렌드 중공사의 기계적 물성과 막 구조는 Sterapore와 유사하였다.

Physical Properties of Ultrahigh Molecular Weight Polyethylene(UHMWPE) Tape Yarns Produced by the Compaction/Drawing Method

  • Jo Hwan;Lee, Seung-Gu;Hwan, Ju-Chang
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.410-413
    • /
    • 1998
  • Since early of 1980's, high. performance fiber has been developed by processing of ultrahigh molecular weight polyethylene(UHMWPE). UHMWPE fibers have high strength high modulus and excellent impact properties due to the strong C-C bond. Furthermore, the specific gravity of UHMWPE fibers is less than 1.0g/$\textrm{cm}^2$, which makes it possible to produce composites that combine good mechanical properties with low specific mass. (omitted)

  • PDF

UHMWPE/CFRP 적층하이브리드 복합재의 층간 Mode I 에너지해방율에 미치는 초기균열길이의 영향 (Initial Crack Length Effect for the Interlaminar Mode I Energy Release Rate on a Laminated UHMWPE/CFRP Hybrid Composite)

  • 송상민;강지웅;권오헌
    • 한국안전학회지
    • /
    • 제34권3호
    • /
    • pp.1-7
    • /
    • 2019
  • A variety of composite materials are applied to industries for the realization of light weight and high strength. Fiber-reinforced composites have different strength and range of application depending on the weaving method. The mechanical performance of CFRP(Carbon Fiber Reinforced Plastic) in many areas has already been demonstrated. Recently, the application of hybridization has been increasing in order to give a compensation for brittleness of CFRP. Target materials are UHMWPE (Ultra High Molecular Weight Polyethylene), which has excellent cutting and chemical resistance, so it is applied not only to industrial safety products but also to places that lining performance is expected for household appliances. In this study, the CFRP and UHMWPE of plain weave, which are highly applicable to curved products, were molded into laminated hybrid composite materials by autoclave method. The mechanical properties and the mode I failure behavior between the layers were evaluated. The energy release rate G has decreased as the initial crack length ratio increased.

인공고관절 모사조건하에서의 탄소섬유 복합재료의 마찰 및 마모 특성 (Friction and wear properties of carbon fiber reinforced epoxy composite for the artificial hip joint application)

  • 송영석;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.239-241
    • /
    • 1999
  • Recently, the friction and wear behaviors of UHMWPE, ceramic and metal is being researched actively for the use as an artificial hip-joint. In this study, because of good wear properties of carbon fiber, we made experiments about the friction and wear of carbon fiber reinforced epoxy composite under the lubricative and the dry condition. The possibilities of carbon-carbon composite for the artificial hip joint application was studied from this results.

  • PDF

슈퍼 섬유를 활용한 일체형 Shock Energy Absorber Lanyard Protection Tube 제조 및 특성분석 (Characteristic and Development of All-in-one Shock Energy Absorber Lanyard Protection Tube used Super Fibers)

  • 조진원;권상준;김상태;염정현;강지만;지병철
    • 한국염색가공학회지
    • /
    • 제26권2호
    • /
    • pp.106-113
    • /
    • 2014
  • Work-related falls are a major problem in the construction and roofing industries. To avoid serious injury to the worker caused by high decelerations or forces, different systems to absorb the energy of a fall are implemented in personal protective equipment. In this study, shock energy absorber lanyard protection tube was prepared using high tenacity PET fiber, P-aramid fiber, and UHMWPE fiber, respectively. Dynamic load test and static load test, bursting strength test based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) or conformity European safety test(CE : EN355) were conducted. Especially maximum arrest force by dynamic load test of energy absorber showed below 6,000N.

슈퍼 섬유를 이용한 Shock Energy Absorber Lanyard의 제조 및 특성분석 (Preparation and Characterization of Shock Energy Absorber Lanyard used Super Fibers)

  • 조진원;권상준;최종덕;김상태;지병철;염정현
    • 한국염색가공학회지
    • /
    • 제26권3호
    • /
    • pp.173-180
    • /
    • 2014
  • Fall-arrest system have been widely applied to provide a safe stop during fall incidents for occupational activities. This research object to evaluate the energy capacity of fall arrest shock energy absorber lanyard in relation to the used super fiber. In this work, shock energy absorber lanyard was prepared using high tenacity PET, high tenacity PET/P-aramid and high tenacity PET/UHMWPE, respectively. Dynamic load and static load tests based on the Korea fall protection equipment standard(Korea Occupational Safety & Health Agency standard 2013-13) were conducted. Maximum arrest force by dynamic load test of shock energy absorber showed below 6,000N. Also, static strength by static load test of lanyard and rope remains 15,000N and 22,000N for 1 min.

안트라퀴논계 초소수성 네이비 염료를 이용한 초고분자량 폴리에틸렌 섬유의 염색 (Dyeing of Ultra High Molecular Weight Polyethylene Fiber Using Anthraquinoid Super-hydrophobic Navy Dyes)

  • 김태경;마희정
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.98-106
    • /
    • 2019
  • The dyeability and fastness properties of super-hydrophobic navy dyes having different length of alkyl groups were investigated on ultra high molecular weight polyethylene fabrics. Those dyes exhibited strong color strength in the wavelength of mainly 550~650nm, which meant that they were navy color. From the results accomplished under various dyeing conditions, it can be concluded that those dyes have higher affinity on the fibers at $130^{\circ}C$ than at the lower dyeing temperature. Considering processing time and thermal damage of the fibers, one hour is good enough to obtain full strength of color. Maximum color strength was obtained at 2~3%owf of pure dyes. Except for the rub fastness under dry condition, all fastness such as to washing and light showed as good as of 4~5 ratings.