• Title/Summary/Keyword: UCS tests

Search Result 70, Processing Time 0.026 seconds

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.

Geotechnical Characteristics of Fly Ash Containing High Content of Unburned Carbons Reinforced with Fibers and Sand (섬유/모래로 보강된 미연소탄소탄소 고함량 플라이애쉬의 지반공학적특성)

  • Yoon, Boyeong;Lee, Changho;Choo, Hyunwook;Lee, Woojin
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.35-46
    • /
    • 2017
  • Most of high carbon fly ashes (HCFA) are discarded in landfills with high costs due to low recycling rate. This study aims to explore the geotechnical behaviors of HCFA mixtures reinforced with fiber and sand. A series of compaction test, unconfined compressive strength test and modified 1D consolidation test with bender element were performed. Specimens were prepared at their optimal moisture contents based on the results of compaction tests. The results of this study demonstrate that the inclusion of fibers to the matrix of HCFA increases unconfined compressive strength (UCS), strain at UCS, and maximum shear modulus ($G_{max}$) at a given void ratio. Reinforcement with sand increases UCS of HCFA; while the strain at UCS is irrelevant with sand fractions. Sand particles may disrupt the direct contacts between HCFA particles at low sand content, resulting in a decrease in $G_{max}$. However, it can be expected that the mixtures with sand content larger than 20% are in dense state; thus, $G_{max}$ of HCFA reinforced with sand shows greater value than that of unreinforced HCFA compacted with the same energy. Regardless of types of reinforcement, the compression index ($C_c$) of both fiber and sand reinforced HCFA is mainly determined by initial void ratio.

Effect of Fines on Unconfined Compressive Strength of Cemented Sands (세립분이 고결모래의 일축압축강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Sun-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.213-220
    • /
    • 2011
  • Fines such as silt or clay are usually mixed with granular particles in natural or reclaimed soils which are slightly cemented. Such fines contained within weakly cemented soils may influence permeability and also mechanical behavior of the soils. In this study, a series of unconfined compression tests on weakly cemented sands with fines are carried out in order to evaluate the effect of fines on unconfined compressive strength (UCS) of cemented soils. Two different cement ratios and fine types were used and fine contents varied by 5, 10, and 15%. Two types of specimens were prepared in this testing. One is the specimen with the same compaction energy applied. The other is the one with the same dry density by varying compaction energy. When the same amount of compaction energy was applied to a specimen, its density increased as a fine content increased. As a result, the UCS of cemented soils with fines increased up to 2.6 times that of one without fines as an amount of fines increased. However, when the specimen was prepared to have the same density, its UCS slightly decreased and then increased a little as a fine content increased. Under the same conditions, a UCS of the specimen with silt was stronger than the one with kaolin. As a cement ratio increased, a UCS increased regardless of fine type and content.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

The Application of Generalized Characteristic Coordinate System

  • Wu Z. N.;Chen Z.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.126-127
    • /
    • 2003
  • In the generalized characteristic coordinate system (GCCS) proposed by Wu and Shi [1], the frame moves at a speed which is a linear combination of the convective speed and the sound speed, thus unifying the classical Eulerian approach, Lagrangian approach, and the unified coordinate system (UCS) of Hui and his co-workers [2]. Here some properties of Euler equations in the GCCS are studied and the advantages of GCCS in capturing expansion fans and shock waves are demonstrated by the results of numerical tests.

  • PDF

Investigating the effect of strength on the LCPC abrasivity of igneous rocks

  • Kahraman, Sair;Fener, Mustafa;Kasling, Heiko;Thuro, Kurosch
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.805-810
    • /
    • 2018
  • The abrasivity of rocks results in tool wear in rock excavation or drilling projects. It can affect significantly the cost and schedule of the projects performed in abrasive rock massess. For this reason, the understanding of the mechanism of rock abrasivity is very important for excavation projects. This study investigates the effect of strength on the LCPC abrasivity coefficient (LAC) for igneous rocks. The LCPT test, the uniaxial compressive strength (UCS) and the Brazilian tensile strength (BTS) tests were carried out on the igneous rock samples. The abrasive mineral content (AMC) was also determined for each rock type. First, the LAC was correlated to the AMC and a very good correlation was found between the two parameters. Then, the multiple regression analysis was carried out by including the AMC, UCS and BTS to the analysis in order to infer the effect of the strength on the LAC. It was seen that the correlation coefficients of multiple regression models were greater than that of the relation between the LAC and the AMC. It is concluded that the AMC is the dominant parameter determining the abrasivity of rock. On the other hand, the rock strength has also significant effect on rock abrasivity.

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Peat stabilization using cement, polypropylene and steel fibres

  • Kalantari, Behzad;Prasad, Arun;Huat, Bujang B.K.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.321-335
    • /
    • 2010
  • This article describes a laboratory research on stabilizing tropical peat using ordinary Portland cement (OPC) as a binding agent, and polypropylene and steel fibres as chemically inert additives. California bearing ratio (CBR) and unconfined compressive strength (UCS) tests were carried out to evaluate the increase in the strength of the stabilized samples compacted at their optimum moisture contents and air cured for up to 90 days. The results show that the UCS values of stabilized peat samples increased by as high as 748.8% by using OPC (5%), polypropylene fibres (0.15%), and steel fibres (2%). The CBR values of the samples stabilized with OPC (5%), polypropylene fibres (0.15%), and steel fibres (4%) showed an increase of as high as 122.7%. The stabilized samples showed a shrinkage in volume upon air curing and this shrinkage was measured by an index called, volume shrinkage index (VSI). The highest VSI recorded was 36.19% for peat without any additives; and the minimum was 0% for the sample containing 30% OPC, 0.15% polypropylene fibres and 2% steel fibres. The technique of stabilizing peat with OPC, polypropylene and fibres, coupled with air curing, appears to be cost-effective compared with other frequently used techniques.

Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks

  • Luis Pereira;Luis Godinho;Fernando G. Branco
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.611-624
    • /
    • 2023
  • Soil properties make it attractive as a building material due to its mechanical strength, aesthetically appearance, plasticity, and low cost. However, it is frequently necessary to improve and stabilize the soil mechanical properties with binders. Soil-cement is applied for purposes ranging from housing to dams, roads and foundations. Unconfined compression strength (UCS) and split tensile strength (CD) are essential mechanical parameters for ascertaining the aptitude of soil-cement for a given application. However, quantifying these parameters requires specimen preparation, testing, and several weeks. Methodologies that allowed accurate estimation of mechanical parameters in shorter time would represent an important advance in order to ensure shorter deliverable timeline and reduce the amount of laboratory work. In this work, an extensive campaign of UCS and CD tests was carried out in a sandy soil from the Leiria region (Portugal). Then, using the machine learning tool Neural Pattern Recognition of the MATLAB software, a prediction of these two parameters based on six input parameters was made. The results, especially those obtained with resource to a Bayesian regularization-backpropagation algorithm, are frankly positive, with a forecast success percentage over 90% and very low root mean square error (RMSE).

Compaction and unconfined compressive strength of sand modified by class F fly ash

  • Bera, Ashis K.;Chakraborty, Sourav
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.261-273
    • /
    • 2015
  • In the present investigation, a series of laboratory compaction and unconfined compressive strength laboratory tests has been performed. To determine the effect of compaction energy, type of sand, and fly ash content, compaction tests have been performed with varying compaction energy ($2700kJ/m^3-300kJ/m^3$), types of sand, and fly ash content (0% to 40%) respectively. From the experimental results, it has been found that the optimum value of unconfined compressive strength obtained for a sand-fly ash mixture comprised of 65% sand and 35% fly ash. Based on the data obtained in the present investigation, a linear mathematical model has been developed to predict the OMC of sand-fly ash mixture.