• Title/Summary/Keyword: UCP1 expression

Search Result 62, Processing Time 0.021 seconds

Bio-functions of Marine Carotenoids

  • Hosokawa, Masashi;Okada, Tomoko;Mikami, Nana;Konishi, Izumi;Miyashita, Kazuo
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Carotenoids being most important pigments among those occurring in nature, have received increased interest owing to their beneficial effects on human health. An effort is made to review marine carotenoids as important bioactive compounds with reference to their presence, chemical, and biofunctional benefits they afford. The potential beneficial effects of marine carotenoids were particularly focused on astaxanthin and fucoxanthin, major marine carotenoids found in marine animals and aquatic plants, respectively. Both carotenoids show strong antioxidant activity which is attributed to quenching singlet oxygen and scavenging free radicals. The potential role of the carotenoids as dietary antioxidants has been suggested as being one of the main mechanism by which they afford their beneficial health effects such as anticancer activity and anti-inflammatory effect. Only recently, antiobesity effect and antidiabetic effect have been noted as specific and novel bio-functions of fucoxanthin. Nutrigenomic study reveals that fucoxanthin induces uncoupling protein 1 (UCP1) expression in white adipose tissue (WAT) mitochondria to lead to oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose level, at least in part, through the down-regulation of tumor necrosis factor $\alpha$ ($TNF{\alpha}$) in WAT of animals.

Proteomics studies of brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning (Proteomics 분석기반 갈색지방 활성화 및 백색지방의 갈색지방화(browning)조절 연구)

  • Bae, Kwang-Hee;Kim, Won-Kon
    • Food Science and Industry
    • /
    • v.50 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • Obesity is a worldwide problem that is associated with metabolic disorders. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue. Adipose tissue is a major metabolic organ, and it has been classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and gene expression patterns. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides. On the other hand, BAT specializes in dissipating energy as heat through uncoupling protein-1 (UCP-1)-mediated non-shivering thermogenesis. Novel type of brown-like adipocyte within WAT called beige/brite cells was recently discovered, and this transdifferentiation process is referred to as the "browning" or "britening" of WAT. Recently, Brown fat and/or browning of WAT have been highlights as a new therapeutic target for treatment of obesity and its related metabolic disorders. Here, we describe recent advances in the study of BAT and browning of WAT, focusing on proteomic approaches.

Bifidobacterium bifidum DS0908 and Bifidobacterium longum DS0950 Culture-Supernatants Ameliorate Obesity-Related Characteristics in Mice with High-Fat Diet-Induced Obesity

  • M. Shamim Rahman;Youri Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.96-105
    • /
    • 2023
  • Probiotic supplements have promising therapeutic effects on chronic diseases. In this study, we demonstrated the anti-obesity effects of two potential probiotics, Bifidobacterium bifidum DS0908 (DS0908) and Bifidobacterium longum DS0950 (DS0950). Treatment with DS0908 and DS0950 postbiotics significantly induced the expression of the brown adipocyte-specific markers UCP1, PPARγ, PGC1α, PRDM16 and beige adipocyte-specific markers CD137, FGF21, P2RX5, and COX2 in C3H10T1/2 mesenchymal stem cells (MSCs). In mice with high-fat diet (HFD)-induced obesity, both potential probiotics and postbiotics noticeably reduced body weight and epididymal fat accumulation without affecting food intake. DS0908 and DS0950 also improved insulin sensitivity and glucose use in mice with HFD-induced obesity. In addition, DS0908 and DS0950 improved the plasma lipid profile, proved by reduced triglyceride, low-density lipoprotein, and cholesterol levels. Furthermore, DS0908 and DS0950 improved mitochondrial respiratory function, confirmed by the high expression of oxidative phosphorylation proteins, during thermogenesis induction in the visceral and epididymal fat in mice with HFD-induced obesity. Notably, the physiological and metabolic changes were more significant after treatment with potential probiotic culture-supernatants than those with the bacterial pellet. Finally, gene knockdown and co-treatment with inhibitor-mediated mechanistic analyses showed that both DS0908 and DS0950 exerted anti-obesity-related effects via the PKA/p38 MAPK signaling activation in C3H10T1/2 MSCs. Our observations suggest that DS0908 and DS0950 could potentially alleviate obesity as dietary supplements.

Anti-obesity Effect of Jeoreongchajeonja-tang in a High-fat Diet-induced Obesity Mouse model (고지방식이로 유도된 비만 생쥐모델에서 저령차전자탕의 항비만 효과)

  • Jang, SoonWoo;Kho, Young-mee;Kwak, Jin-young;Ahn, Taek-won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.30 no.2
    • /
    • pp.8-27
    • /
    • 2018
  • Objective This study investigated the effects of Jeoreongchajeonja-tang in a high-fat diet-induced obesity mouse model. Methods The study examined 9-week-old male mice (C57bl/6J) divided into four groups: the normal(C57bl/6J-Nr), control (high-fat diet only; HFD-CTL), positive-control (high-fat diet with Garcinia cambogia), and experimental (high-fat diet with Jeoreongchajeonja-tang; HFD-JCT) groups. After 7 weeks, the body weight, food efficiency ratio, organ weight, and visceral fat weight of the mice were measured. Blood serum tests, mRNA, liver histopathology, and epididymis adipocytes were also examined. Results Compared with the Control(HFD-CTL) group, the Experimental(HFD-JCT) group given Jeoreongchajeonja-tang showed significant reductions in absolute body weight and food efficiency ratio. The serum alanine aminotransferase, total-cholesterol, triglyceride, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, insulin-like growth factor-1, and leptin levels were significantly lower in the experimental group than in the control group. The serum adiponectin levels were significantly higher in the experimental group than in the control group. Compared with the control group, the experimental group showed significant reductions in absolute abdominal subcutaneous fat, epididymal adipose tissue, kidney adipose tissue, intestine adipose tissue, and liver, kidney and spleen adipose tissue weights. The C/EBP-${\beta}$, leptin, and SREBP1c/ADD1 mRNA expression were significantly lower in the experimental group than in the control group, while the UCP-2 and adiponectin mRNA expression were significantly higher. Compared with the control group, the experimental group showed a significant reduction in the absolute adipocyte area in the liver and epididymal adipose tissue. Conclusion Jeoreongchajeonja-tang has an anti-obesity effect. Additional clinical studies are expected.

Anti-obesity Effects of Wolbi-tang(越婢湯) on the Obese-mice Induced by High-fat Diet (월비탕(越婢湯)이 고지방식이(高脂肪食餌)로 유도된 비만 생쥐에 미치는 영향)

  • Park, Ji-Hyun;Hong, Seo-Young
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.31-48
    • /
    • 2011
  • Objectives : In order to investigate the anti-obesity effects of Wolbi-tang(here in after referred to WBT) on the obese gene and obese inhibitory, C57BL/6 mice were induced by high-fat diet. Methods : C57BL/6 mice were divided into 5 groups(normal, only high-fat diet, high-fat diet with Reductil, high-fat diet with WBT 400, 200 mg/kg extract) and fed for 5 weeks. And observed body weight change, total cholesterol, low density lipoprotein cholesterol(LDL-cholesterol), high density lipoprotein cholesterol (HDL-cholesterol), triglyceride, glucose, leptin change, alanine transaminase(ALT), aspartate transaminase(AST), serum creatinine, the expression of ${\beta}3$-adrenergic receptor(${\beta}3AR$), leptin, uncoupling protein(UCP2) gene in 3T3-L1 adipocyte, 3T3-L1 adipocyte proliferation, histological analysis of adipose tissue and liver tissue. Results : 1. Refer to cell cytotoxicity, viability of human fibroblast cells(hFCs) showed not significant changes. 2. The amount of ALT, AST was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. The amount of creatinine showed not significant changes. 3. Body weight was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. 4. The amount of total cholesterol and triglyceride was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. LDL-cholesterol was decreased and HDL-cholesterol was increased significantly in WBT 400 mg/kg groups. 5. The amount of glucose was decreased significantly in WBT 400 mg/kg groups. 6. The amount of serum leptin was decreased significantly in WBT 400 mg/kg, 200 mg/kg groups. 7. The revelation of ${\beta}3AR$ in 3T3-L1 adipocyte was increased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The revelation of leptin was decreased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The revelation of UCP2 was decreased significantly in WBT $100{\mu}g/ml$ group. 8. 3T3-L1 adipocyte proliferation was decreased significantly in WBT $100{\mu}g/ml$, $50{\mu}g/ml$ groups. The size of adipocyte was decreased relative to the control group in WBT 400 mg/kg group. 9. The adipose vacuoles in liver tissue was decreased relative to the control group. Conclusions : These results suggested that WBT has inhibitory effects of obesity. WBT might be applicated on treatment of obesity and metabolic syndrome. Further studies analysing its effects were needed.

Enzymatically Modified Isoquercitrin Attenuates High-Fat Diet-Induced Obesity (효소 처리된 Isoquercitrin이 고지방식이에 의해 비만이 유도된 마우스의 체중감소에 미치는 영향)

  • Min, Yeojin;Park, Taesun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.474-483
    • /
    • 2016
  • Enzymatically modified isoquercitrin (EMIQ) is a mixture of quercetin glycodsides consisting of isoquercitrin and its ${\alpha}-glucosylated$ derivatives containing one to seven additional linear glucose moieties. The aim of this study was to assess whether or not EMIQ attenuates high-fat diet (HFD)-induced body weight gain and changes in plasma indices of obesity in mice. Male C57BL/6N mice were fed chow diet, HFD, and HFD containing 1.2% EMIQ for 10 weeks. EMIQ significantly (P<0.05) reduced body weight gain (-21%), total visceral fat-pad weights (-31%), and plasma levels of triglycerides (-17%), total cholesterol (-19%), and free fatty acids (-26%) in HFD-fed mice. EMIQ significantly increased protein kinase A (PKA) expression in the epididymal adipose tissue of HFD-fed mice. Expression of adipogenesis-related genes significantly decreased, whereas expression of fatty acid oxidation-related and thermogenesis-related genes increased in epididymal adipose tissue of EMIQ-fed mice compared with HFD-fed mice. These results suggest that the protective effects of EMIQ against HFD-induced adiposity in mice appear to be associated with PKA-mediated signaling cascades involved in adipogenesis, fatty acid oxidation, and thermogenesis in adipose tissue.

Artemisia capillaries Herbal Acupuncture Improves Metabolic Abnormalities in High Fat Diet-induced Obese ICR Mice (인진약침이 고지방식이유도 비만 ICR Mice에서 항비만 및 대사이상 개선에 미치는 영향)

  • Youh, Eun-Joo;Seo, Byung-Kwan;Huang, Bo;Kim, Jong-In;Kang, Sung-Keel
    • Journal of Acupuncture Research
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • 목적 : 인진약침이 고지방식이로 유발된 비만 ICR mice에서 비만 및 동반 대사이상에 미치는 효과와 그 기전을 연구하고자 한다. 방법 : 인진약침의 비만 예방효과를 검증하기 위하여, 4주간 고지방식이를 급여하면서 150mg/kg 또는 300mg/kg의 인진약침을 양측 비수($BL_{20}$)에 교대로 매일 피하에 시술하였다. 또한 인진약침의 비만 치료효과를 검증하기 위하여, 4주간 고지방식이를 급여한 비만 ICR mice에 추가 4주간 고지방식이를 유지하면서 300 mg/kg 인진약침액과 vehicle control로써 등량의 distilled water를 양측 비수($BL_{20}$)에 교대로 매일 피하에 약침시술하였다. 인진약침의 항비만효과와 기전을 알아보기 위해, 체중, blood glucose, insulin, total cholesterol, triglyceride, non-esterified fatty acid (NEFA), AST, ALT levels 등 대사지표를 측정하고 부고환조직의 조직학적 관찰을 시행하였으며, AMPK activation과 adipocyte differentiation, fatty acid ${\beta}$-oxidation 및 thermogenesis와 관련된 gene expressions을 평가하였다. 결과 : 인진약침의 치료를 통하여 고지방식이 급여로 인한 체중의 증가가 억제되었을 뿐만 아니라, 비만 ICR mice의 체중을 감소시켰으며, glucose 및 lipid homeostasis를 개선시켰으며 지방조직의 증식을 억제하였다. AMPK의 phosphorylation과 CPT-1 및 UCP2의 발현을 증가시켰으며, PPAR-${\gamma}$, C/EBP${\alpha}$, aP2, LPL,FAS, SCD-1의 발현을 억제하였다. 결론 : 인진약침은 고지방식이 유도 동물모델에서 비만 및 동반 대사이상을 개선시키는 효과가 있으며, 이는 식이억제에 의한 2차적 효과라기 보다는 energy expenditure를 증가시키고, pre-adipocyte differentiation 및 proliferation을 억제하며, lipogenesis를 억제하고 lipolysis를 증가시키는 효과에 의한 것으로 사료된다.

Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice (고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구)

  • Jeon, Woo-Jin;Kim, Ji-Young;Oh, Ik-Hoon;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.192-202
    • /
    • 2017
  • In this study, factors involved in lipid and energy metabolism following treatment with ethanolic extract of the Polygonatum sibiricum rhizome (ID1216) were evaluated in high-fat diet-induced obese mice. ID1216-treated mice showed a significant reduction in weight gain compared to non-treated mice. ID1216 treatment increased the protein levels of AMP-dependent protein kinase, sirtuin1, peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1-${\alpha}$ ($PGC1{\alpha}$), peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and uncoupling proteins in the adipose tissue, liver and muscle compared to vehicle treatment. Analysis of downstream signals of the sirtuin1 $PGC1{\alpha}$-$PPAR{\alpha}$ pathway showed that ID1216 regulates the expression of ${\beta}$-oxidation related genes such as acyl-CoA oxidase, carnitine palmitoyltransferase1, acyl-CoA dehydrogenase and adipocyte protein 2. In addition, ID1216 increased the expression of adipose triglyceride lipase. These results suggest that ID1216 has anti-obesity effects by regulating the genes involved thermogenesis, ${\beta}$-oxidation and lipolysis in a diet-induced obesity model.

Bitter Melon (Momordica charantia) Extract Enhances Exercise Capacity in Mouse Model (여주(Momordica charantia) 추출물이 생쥐의 지구력 운동수행능력 향상 효과에 미치는 영향)

  • Kim, Inbo;Park, Choon-Ho;Jung, Hoe-Yune;Jeong, Juseong;Hong, Hwan-Ung;Kim, Jong Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.506-512
    • /
    • 2016
  • Bitter melon (Momordica charantia) is used in traditional herbal medicine in many Asian countries for the treatment of several diseases such as diabetes, eczema, night blindness, psoriasis, and rheumatism. Especially, most reports concerning the biological activities of bitter melon have focused on its effects on diabetes and hyperglycemia. Also, bitter melon is regarded as a longevity food, suggesting that it has several beneficial effects on anti-aging and the maintenance of a healthy state. Thus, we investigated whether bitter melon could increase the capacity of exercise in this study. Interestingly, bitter melon fruit extract activated AMP-activated protein kinase (AMPK), which is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. In addition, bitter melon extract increased the expression of enzymes involved in fatty acid oxidation such as mitochondrial uncoupling protein 3 (UCP3), carnitine palmitoyl transferase 1b (CPT1b), and pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4). Moreover, exercise tolerance was much more enhanced in bitter melon treated animals compared to the non-treated control group. These results suggest that bitter melon is a promising candidate for the development of functional foods beneficial for physical strength and the enhancement of exercise capacity.

Effect of Exercise Intensity on Unfolded Protein Response in Skeletal Muscle of Rat

  • Kim, Kihoon;Kim, Yun-Hye;Lee, Sung-Hye;Jeon, Man-Joong;Park, So-Young;Doh, Kyung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2014
  • Endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and mitochondrial biogenesis were assessed following varying intensities of exercise training. The animals were randomly assigned to receive either low- (LIT, n=7) or high intensity training (HIT, n=7), or were assigned to a control group (n=7). Over 5 weeks, the animals in the LIT were exercised on a treadmill with a $10^{\circ}$ incline for 60 min at a speed of 20 m/min group, and in the HIT group at a speed of 34 m/min for 5 days a week. No statistically significant differences were found in the body weight, plasma triglyceride, and total cholesterol levels across the three groups, but fasting glucose and insulin levels were significantly lower in the exercise-trained groups. Additionally, no statistically significant differences were observed in the levels of PERK phosphorylation in skeletal muscles between the three groups. However, compared to the control and LIT groups, the level of BiP was lower in the HIT group. Compared to the control group, the levels of ATF4 in skeletal muscles and CHOP were significantly lower in the HIT group. The HIT group also showed increased PGC-$1{\alpha}$ mRNA expression in comparison with the control group. Furthermore, both of the trained groups showed higher levels of mitochondrial UCP3 than the control group. In summary, we found that a 5-week high-intensity exercise training routine resulted in increased mitochondrial biogenesis and decreased ER stress and apoptotic signaling in the skeletal muscle tissue of rats.