Browse > Article
http://dx.doi.org/10.23093/FSI.2017.50.1.26

Proteomics studies of brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning  

Bae, Kwang-Hee (Metabolic Regulation Research Center, KRIBB)
Kim, Won-Kon (Metabolic Regulation Research Center, KRIBB)
Publication Information
Food Science and Industry / v.50, no.1, 2017 , pp. 26-35 More about this Journal
Abstract
Obesity is a worldwide problem that is associated with metabolic disorders. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue. Adipose tissue is a major metabolic organ, and it has been classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and gene expression patterns. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides. On the other hand, BAT specializes in dissipating energy as heat through uncoupling protein-1 (UCP-1)-mediated non-shivering thermogenesis. Novel type of brown-like adipocyte within WAT called beige/brite cells was recently discovered, and this transdifferentiation process is referred to as the "browning" or "britening" of WAT. Recently, Brown fat and/or browning of WAT have been highlights as a new therapeutic target for treatment of obesity and its related metabolic disorders. Here, we describe recent advances in the study of BAT and browning of WAT, focusing on proteomic approaches.
Keywords
Obesity; Adipose tissue; Brown adipose tissue; Browning; Proteomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, Yao S, Ma Q, Jin L, Yang J, Wang W, Ning G. Berberine activates thermogenesis in white and brown adipose tissue. Nat. Commun. 5: 5493 (2014)   DOI
2 Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br. J. Pharmacol. 173: 2369-2389 (2016)   DOI
3 Yu J, Zhang S, Cui L, Wang W, Na H, Zhu X, Li L, Xu G, Yang F, Christian M, Liu P. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta. May;1853(5): 918-28 (2015)   DOI
4 Navet R, Mathy G, Douette P, Dobson RL, Leprince P, De Pauw E, Sluse-Goffart C, Sluse FE. Mitoproteome plasticity of rat brown adipocytes in response to cold acclimation. J. Proteome Res. 6: 25-33 (2007)   DOI
5 Zhong J, Krawczyk SA, Chaerkady R, Huang H, Goel R, Bader JS, Wong GW, Corkey BE, Pandey A. Temporal profiling of the secretome during adipogenesis in human. J. Proteome Res. 9: 5228-5238 (2010)   DOI
6 Lehr S, Hartwig S, Lamers D, Famulla S, Muller S, Hanisch FG, Cuvelier C, Ruige J, Eckardt K, Ouwens DM, Sell H, Eckel J. Identification and validation of neve! adipokines released from primary human adipocytes. Mol. Cell. Proteomics. 11: M111.010504 (2004)
7 Long JZ, Svensson KJ, Bateman LA, Lin H, Kamenecka T, Lokurkar lA, Lou J, Rao RR, Chang MR, Jedrychowski MP, Paulo JA, Gygi SP, Griffin PR, Nomura DK, Spiegelman BM. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria. Cell 166: 424-435 (2016)   DOI
8 Kruger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl. Acad. Sci. USA. 105: 2451-2456 (2008)   DOI
9 Choi HR, Kim WK., Kim EY, Han BS, Min JK, Chi SW, Park SG, Bae KH, Lee SC. Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase. PLoS One 8: e72340 (2013)   DOI
10 Choi HR, Kim WK., Park A, Jung H, Han BS, Lee SC, Bae KH. Protein tyrosine phospbatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes. BMB Rep. 46: 539-543 (2013)   DOI
11 Shinoda K, Ohyama K, Hasegawa Y, Chang HY, Ogura M, Sato A, Hong H, Hosono T, Sharp LZ, Scheel DW, Graham M, lshihama Y, Kqjimura S. Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure. Cell Metab. 22: 997-1008 (2015)   DOI
12 Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome. type 2 diabetes, and casrdiovascular disease. Diabetes 56: 2655-2667 (2007)   DOI
13 Mallick P, Kuster B. Proteomics: A pragmatic perspective. Nat. Biotechnol. 28: 695-709 (2010)   DOI
14 Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881-887 (2006)   DOI
15 Sethi JK, Vidal-Puig AJ. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 48: 1253-1262 (2007)   DOI
16 Lee P, Swarbridt. MM, Ho KK. Brown adipose tissue in adult humans: A metabolic renaissance. Endocrine Rev. 34: 413-438 (2013)   DOI
17 Saely CH, Geiger K., Drexel H. Brown versus white adipose tissue: A mini-review. Gerontology. 58: 15-23 (2012)   DOI
18 van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healty men. N. Engl. J. Med. 360: 1500-1508 (2009)   DOI
19 Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichfenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. CelI 150: 366-376 (2012)   DOI
20 Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S. Evidence for two types of brown adipose tissue in human. Nat. Med. 19: 631-634 (2013)   DOI
21 Giralt M, Villarroya F. White, brown, beige/brite: Ditterent adipose cells for different functions? Endocrinology 154: 2992-3000 (2013)   DOI
22 Ghosb D, Poisson LM. "Omics" dala and levels of evidence for biomadcer discovery. Genomics 93: 13-16 (2009)   DOI
23 Yang W, Steen H. Freeman MR. Proteomic approaches to analysis of multiprotein signaling complexes. Proteomics 8: 832-851 (2008)   DOI
24 Cavatt BF, Simon GM, Yates JR. The biological impact of mass-spectrometry-based proteomics. Nature 450: 991-1000 (2007)   DOI
25 Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH. Recent advances in proteomic studies of adipose tissues and adipocyles. Int. J. Mol. Sci. 16: 4581-4599 (2015)   DOI
26 Timmons JA, Wennmalm K., Larsson O, Walden TB, Lassmann T, Petrovic N, Hamilton DL, Gimeno RE, Wahlestedt C, Baar K, Nedergaard J, Cannon B. Myogenie gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl. Acad. Sci. USA. 104: 4401-4406 (2007)   DOI
27 Seale P, Bjork: B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S. Conroe HM, Erdjument-Bromage H. Tempst P, Rudnicki MA, Beier DR, Spieglman BM.. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961-967 (2008).   DOI
28 Part A, Kim WK, Bae KH. Distinction of while, beige and brown adipocytes derived from mesenchymal stem cells. World J. Stem Cells. 6: 33-42 (2014)   DOI
29 Muller S, Balaz M, Stefanicka P, Varga L, Amri EZ. Ukropec J, Wollscheid B, Wolfrum C. Proteomic Analysis of human Brown Adipose Tissue Reveals Utilization of Coupled and Uncoupled Energy Expenditure Pathways. Sci. Rep. 6: 30030 (2016)   DOI
30 Li J, Zhao WG, Shen ZF, Yuan T, Liu SN, Liu Q. Fu Y, Sun W. Comparative proteome analysis of brown adipose tissue in obese C57BL/6J mice using iTRAQ-coupled 2D LC-MS/MS. PLoS One. 10: e0119350 (2015)   DOI
31 Kamal AH, Kim WK., Cho K, Park A, Min JK, Han BS, Park SG, Lee SC, Bae KH. Investigation of adipocyte proteome during the differentiation of brown preadipocytes. J. Proteomics 94: 327-336 (2013)   DOI
32 Choi DK, Oh TS, Choi JW, Mukherjee R, Wang X, Liu H, Yun JW. Gender difference in proteome of brown adipose tissues between male and female rats exposed to a high fat diet. Cell Physiol. Biochem. 28: 933-948 (2011)   DOI
33 Okita N, Hayashida Y, Kojima Y, Fukushima M, Yuguchi K, Mikami K, Yamauchi A, Watanabe K, Noguchi M, Nakamura M, Toda T, Higami Y. Differential responses of white adipose tissue and brown adipose tissue to calorie restriction in rats. Mech. Aging Dev. 133: 255-266 (2012)   DOI
34 Joo Jl, Kim DH, Choi JW, Yun JW. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome Res. 9: 2977-2987 (2010).   DOI
35 Schmid GM, Converset V, Walter N, Sennitt MV, Leung KY, Byers H, Ward M, Hocbstrasser DF, Cawthorne MA, Sanchez JC. Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4: 2270-2282 (2004)   DOI
36 Forner F, Kwmar C, Luber CA, Fromme T, Klingenspor M, Mann M. Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions. Cell Metab. 10: 324-335 (2009)   DOI
37 Kim SW, Choi JH, Mukherjee R, Hwang KC, Yun JW. Proteomic identification of fat-browning markers in cultured white adipocytes treated with curcumin. Mol. Cell Biochem. 415: 51-66 (2016)   DOI
38 Parray HA, Yun JW. Cannabidiol promotes browning in 3T3-L1 adipocytes. Mol Cell Biochem. 416: 131-139 (2016)   DOI
39 Choi JH, Yun JW. Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 32: 1002-1010 (2016)   DOI
40 Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK, Kondepudi KK, Bishnoi M. Capsaicin induces "brite" phenotype in differentiating 3T3-L1 preadipocytes. PLoS One. 9: e103093 (2014)   DOI