• Title/Summary/Keyword: UCP mRNA

Search Result 34, Processing Time 0.02 seconds

The effects of Allomyrina dichotoma larval extract on palmitate-induced insulin resistance in skeletal muscle cells (장수풍뎅이 유충 추출물이 고지방산 처리 골격근세포의 인슐린 저항성에 미치는 영향)

  • Kim, Kyong;Sim, Mi-Seong;Kwak, Min-Kyu;Jang, Se-Eun;Oh, Yoon Sin
    • Journal of Nutrition and Health
    • /
    • v.55 no.4
    • /
    • pp.462-475
    • /
    • 2022
  • Purpose: Allomyrina dichotoma larvae are one of the approved edible insects with nutritional value and various functional and medicinal properties. Previously we have demonstrated that the Allomyrina dichotoma larval extract (ADLE) ameliorates hepatic insulin resistance in high-fat diet (HFD)-induced diabetic mice through the activation of adenosine monophosphate-activated protein kinase (AMPK). This study investigated the effects of ADLE on insulin resistance in the skeletal muscle and explored mechanisms for enhancing the glucose uptake in palmitate (PAL)-treated C2C12 myotubes. Methods: To induce insulin resistance, the differentiated C2C12 myotubes were treated with PAL (0.5 mM) for 24 hours, and then treated with a 0.5 mg/ml concentration of ADLE, and the resultant effects were measured. The expression levels of glucose transporter-4 (GLUT4), AMPK, and the mitochondrial metabolism-related proteins were analyzed by western blotting. The mRNA expression levels of lipogenesis- related genes were determined by quantitative reverse-transcriptase PCR. Results: The exposure of C2C12 myotubes to 0.5 mg/ml of ADLE increased cell viability significantly compared to PAL-treated cells. ADLE upregulated the protein expression of GLUT4 and enhanced glucose uptake in the PAL-treated cells. ADLE increased the phosphorylated AMPK in both the PAL-treated C2C12 myotubes and HFD-treated skeletal muscle. The reduced expression levels of peroxisome-proliferator-activated receptor gamma co-activator-1 alpha (PGC1α) and uncoupling protein 3 (UCP3) due to the PAL and HFD treatment were reversed by the ADLE treatment. The citrate synthase activity was also significantly increased with the PAL and ADLE co-treatment. Moreover, the mRNA and protein expressions of fatty acid synthesis-related factors were reduced in the PAL and HFD-treated muscle cells, and this effect was significantly attenuated by the ADLE treatment. Conclusion: ADLE activates AMPK, which in turn induces mitochondrial metabolism and reduces fatty acid synthesis in C2C12 myotubes. Therefore, ADLE could be useful for preventing or treating insulin resistance of skeletal muscles in diabetes.

Effects of Polygonatum sibiricum rhizome extract on lipid and energy metabolism in high-fat diet-induced obese mice (고지방 식이 유도 비만 마우스 모델에서 황정 추출물의 지방질 및 에너지 대사 관련 유전자에 대한 효능 연구)

  • Jeon, Woo-Jin;Kim, Ji-Young;Oh, Ik-Hoon;Lee, Do-Seop;Shon, Suh-Youn;Seo, Yun-Ji;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.192-202
    • /
    • 2017
  • In this study, factors involved in lipid and energy metabolism following treatment with ethanolic extract of the Polygonatum sibiricum rhizome (ID1216) were evaluated in high-fat diet-induced obese mice. ID1216-treated mice showed a significant reduction in weight gain compared to non-treated mice. ID1216 treatment increased the protein levels of AMP-dependent protein kinase, sirtuin1, peroxisome proliferator-activated receptor ${\gamma}$ coactivator 1-${\alpha}$ ($PGC1{\alpha}$), peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and uncoupling proteins in the adipose tissue, liver and muscle compared to vehicle treatment. Analysis of downstream signals of the sirtuin1 $PGC1{\alpha}$-$PPAR{\alpha}$ pathway showed that ID1216 regulates the expression of ${\beta}$-oxidation related genes such as acyl-CoA oxidase, carnitine palmitoyltransferase1, acyl-CoA dehydrogenase and adipocyte protein 2. In addition, ID1216 increased the expression of adipose triglyceride lipase. These results suggest that ID1216 has anti-obesity effects by regulating the genes involved thermogenesis, ${\beta}$-oxidation and lipolysis in a diet-induced obesity model.

Effect of Exercise Intensity on Unfolded Protein Response in Skeletal Muscle of Rat

  • Kim, Kihoon;Kim, Yun-Hye;Lee, Sung-Hye;Jeon, Man-Joong;Park, So-Young;Doh, Kyung-Oh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2014
  • Endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and mitochondrial biogenesis were assessed following varying intensities of exercise training. The animals were randomly assigned to receive either low- (LIT, n=7) or high intensity training (HIT, n=7), or were assigned to a control group (n=7). Over 5 weeks, the animals in the LIT were exercised on a treadmill with a $10^{\circ}$ incline for 60 min at a speed of 20 m/min group, and in the HIT group at a speed of 34 m/min for 5 days a week. No statistically significant differences were found in the body weight, plasma triglyceride, and total cholesterol levels across the three groups, but fasting glucose and insulin levels were significantly lower in the exercise-trained groups. Additionally, no statistically significant differences were observed in the levels of PERK phosphorylation in skeletal muscles between the three groups. However, compared to the control and LIT groups, the level of BiP was lower in the HIT group. Compared to the control group, the levels of ATF4 in skeletal muscles and CHOP were significantly lower in the HIT group. The HIT group also showed increased PGC-$1{\alpha}$ mRNA expression in comparison with the control group. Furthermore, both of the trained groups showed higher levels of mitochondrial UCP3 than the control group. In summary, we found that a 5-week high-intensity exercise training routine resulted in increased mitochondrial biogenesis and decreased ER stress and apoptotic signaling in the skeletal muscle tissue of rats.

Identification of the Differentially Expressed Genes of Hanwoo During the Growth Stage by Subtractive cDNA Hybridization (Subtraction 기법을 이용한 한우 성장 단계 특이 발현 유전자 탐색)

  • Jang, Y.S.;Kim, T.H.;Yoon, D.H.;Park, E.W.;Cheong, I.C.;Jo, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.13-22
    • /
    • 2002
  • To identify the differentially expressed genes at growth stage of Hanwoo, we constructed the subtractive cDNA library from loin mRNA of 12- and 24-month old Hanwoo by PCR-based subtraction. The fourteen genes were confirmed by sequencing and reverse northern blot analysis, and they were selected as candidate of putative genes differentially expressed at the growth stage of Hanwoo. Three subtracted cDNA fragments that expressed specific signal to cDNA probe for 6-month-old loin of Hanwoo were highly homologous to those of the genes encoding EPV 20, Ca2+ATPase, and TCTP, respectively. The nine cDNA clones showed intense signal to cDNA probe from 12-month-old loin of Hanwoo, and highly homologus to those of genes encoding VCP, HSP 70, aldolase A, MSSK1, GM-2 activator protein, ryanodine receptor, acidic ribosomal phosphoprotein p1, ADP/ATP translocase, and UCP 2, respectively. Two subtracted cDNA clones that expressed specific signal to cDNA probes for 12- and 24-month-old loin of Hanwoo were detected. One of them was highly homologus to the gene encoding ferrochelatase and the other was highly homologus to the gene encoding ADRP.