• Title/Summary/Keyword: UBET(Upper-Bound Elemental Technique)

Search Result 22, Processing Time 0.021 seconds

A Study on Non-Axisymmetric Precision Forging with and without Flash (플래쉬 유무에 따른 비축대칭 정밀단조에 관한 연구)

  • 배원병;김영호;최재찬;이종헌;김동영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.218-223
    • /
    • 1993
  • An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

A Study on Developementof UBST Program for Axisymmetric Metal Forming Process (축대칭 성형공정에 대한 유동함수 상계요소법의 프로그램 개발에 관한 연구)

  • 김영호;배원병;박재우;엄태준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.124-130
    • /
    • 1995
  • An upper-bound elemental stream function technique(UBST) is proposed for solivng forging and backward extrusion problems that are geometrically complex or need a forming simulation . And in the forging problems, this study investigates that layer of elements effects dissipation of total energy and load. The element system of UBSTuses the curve fitting property of FEM and the fluid incompressiblity of the stream function . The foumulated optimal design problems with constraints ae solved by the flixible toerance method. In the closed-die forging and backward extrusion, the result of layer of element by this study produces a lower upper-bound solution than that fo UBET and conventional layer of element . And the main advantage of UBST program is that a computer code, once written , can be used for a large variety problems by simply changing the input data.

  • PDF