• Title/Summary/Keyword: UBC9

Search Result 23, Processing Time 0.016 seconds

Analysis of Diversity of Panax ginseng Collected in Korea by RAPD Technique (RAPD 방법을 이용한 국내 수집 인삼 (Panax ginseng C. A. Meyer)의 다양성 분석)

  • Seo, Sang-Deog;Yuk, Jin-Ah;Cha, Sun-Kyung;Kim, Hyun-Ho;Seong, Bong-Jae;Kim, Sun-Ick;Choi, Jae-Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.377-384
    • /
    • 2003
  • Genetic differences among nine land races of Korean ginseng (Panax ginseng C. A. Meyer) were examined using RAPD markers. Land races of Korean ginseng were collected from nine regions in Korea: Cheongwon, Guesan, Geumsan, Namwon, Pochun, Yangju, Yeoncheon, Yeongju. Out of 48 RAPD primers tested, 5 primers (OPA 7, OPA 13, URP 2, URP 3 and UBC 3) produced remarkable bands which showing polymorphisms among evaluated collections. Lower levels of genetic diversity were in detected same land races than among other land races. Genetic differences within and among land races indicate heterogeneity. These results indicate that cultivated ginseng in Korea is heterogeneous. Genetic similarity matrices of RAPD profiles were generated via coefficients of variation and the data were processed by the cluster analysis (UPGMA). When 90 collections were evaluated using selected 5 primers, those were clustered to 5 and 3 subgroups. These differences in genetic variation between land races of Korean ginseng implied the potential source for further breeding of Korean ginseng.

Response Modification Coefficient Using Natural Period (고유진동주기를 이용한 응답수정계수)

  • 김희중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.229-237
    • /
    • 1996
  • In some current procedures, ground motions from different sources have been scaled by their peak ground accelerations and combined to obtain smoothed response spectra for specific regions. As consideration of the inelastic deformation capacity of structure, inelastic deformations are permitted under seismic ground excitation in all codes. In the ATC(Applied Technology Council) and UBC(Uniform Building Code), the inelastic design spectrum is obtained by reducing the elastic design spectrum by a factor that is independent of structural period. In this study, the average of nonlinear response spectra calculated from a sample of 20 records for each event are constructed to obtain the smoothed response spectra. These response spectra are used to examine the effects of structural strength factors such as the yield strength ratio and damping value. Through the regression analysis of nonlinear response of system for a given damping value and yield strength ratio, the required yield strength for seismic design can be estimated for a certain earthquake event. And a response modification coefficient depending on the natural period for current seismic design specifications are proposed.

  • PDF

Overview of Seismic Loads and Application of Local Code Provisions for Tall Buildings in Baku, Azerbaijan

  • Choi, Hi Sun;Sze, James;Ihtiyar, Onur;Joseph, Leonard
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Baku, the capital of Azerbaijan, has seen a boom in construction in recent years. The old Baku city has been rapidly transforming into a new hub of high-rise buildings and lively cultural centers hosting the Euro Vision Song Contest in 2012 and European Games in 2015. A major population shift to Baku from its suburbs and the countryside has resulted in the doubling of Baku's population in the 4 years between 2009 and 2013. As of January 2013, Baku's population reached four million people, 43% of the citizens in Azerbaijan according to The State Statistical Committee of Azerbaijan. With this trend, the city needs more high-rise buildings to accommodate rapidly increasing demands for more housing and business space. Until the Azerbaijan Seismic Building Code was published in 2010 and became effective, many different seismic criteria, in terms of building codes and seismic intensities, were used for all new high-rise projects in Baku. Some designers used the SNIP (Russian) code with seismic level 9 or level 8 with 1 point penalty. Others used the Turkish code with Seismic Zone 1, UBC 97 with Zone 2 through 4, or IBC with Sa = 0.75 g through 1.0 g. The seismic intensity is now clarified with the Azerbaijan Seismic Building Code. However, the Azerbaijan Seismic Building Code is appropriate for low-rise buildings applications but may be inappropriate for high-rise project applications. This is because the code-defined response spectrum yields unrealistically conservative seismic forces for high-rise buildings with long periods, as compared to those determined by other internationally accepted building codes. This paper provides observations and recommendations for code-based seismic load assessment of high-rise buildings in the Baku area.