Analysis of Diversity of Panax ginseng Collected in Korea by RAPD Technique

RAPD 방법을 이용한 국내 수집 인삼 (Panax ginseng C. A. Meyer)의 다양성 분석

  • Seo, Sang-Deog (Chungnam Agricultural Research & Extension Services) ;
  • Yuk, Jin-Ah (College of Agric. & Life Sci., Chungnam Natl. Univ.) ;
  • Cha, Sun-Kyung (College of Agric. & Life Sci., Chungnam Natl. Univ.) ;
  • Kim, Hyun-Ho (Gumsan Agricultural Development & Technology Center) ;
  • Seong, Bong-Jae (Gumsan Agricultural Development & Technology Center) ;
  • Kim, Sun-Ick (Gumsan Agricultural Development & Technology Center) ;
  • Choi, Jae-Eul (College of Agric. & Life Sci., Chungnam Natl. Univ.)
  • Published : 2003.12.31

Abstract

Genetic differences among nine land races of Korean ginseng (Panax ginseng C. A. Meyer) were examined using RAPD markers. Land races of Korean ginseng were collected from nine regions in Korea: Cheongwon, Guesan, Geumsan, Namwon, Pochun, Yangju, Yeoncheon, Yeongju. Out of 48 RAPD primers tested, 5 primers (OPA 7, OPA 13, URP 2, URP 3 and UBC 3) produced remarkable bands which showing polymorphisms among evaluated collections. Lower levels of genetic diversity were in detected same land races than among other land races. Genetic differences within and among land races indicate heterogeneity. These results indicate that cultivated ginseng in Korea is heterogeneous. Genetic similarity matrices of RAPD profiles were generated via coefficients of variation and the data were processed by the cluster analysis (UPGMA). When 90 collections were evaluated using selected 5 primers, those were clustered to 5 and 3 subgroups. These differences in genetic variation between land races of Korean ginseng implied the potential source for further breeding of Korean ginseng.

본 연구는 고려인삼 재래종의 유전적 차이를 RAPD marker로 평가하였다. 재래종은 우리나라 주요 인삼재배 단지인 괴산, 금산, 남원, 포천, 양주, 연천, 영주로부터 수집한 인삼에서 10개체를 임의 선발하여 사용하였다. 9개 지역의 90개체를 대상으로 RAPD분석을 한 결과 48개의 primer 중 OPA 7, OPA 13, URP 2, URP 3, UBC 3의 5개 primer가 재현성이 있고 재래종 내 개체간에도 다형성인 band를 보였다. 재래종 집단간보다 재래종 내에서 유전적 다양성이 낮았다. 재래종 집단 간 또는 재래종 집단내의 유전적 차이가 있다는 것은 이 집단들이 헤테로라는 것을 의미한다. 이러한 결과는 우리나라에서 재배중인 고려 인삼은 유전 자원의 혼합으로 헤테로라는 것을 암시한다. 선발된 5개의 primer를 이용하여 90개체를 집괴분석한 결과 국내 재래종 인삼은 5개군으로 그리고 3개의 아군으로 구분되었다. 국내 재래종 인삼은 유전적 변이가 크므로 인삼 육종을 위한 재료로 이용될 수 있을 것이다.

Keywords

References

  1. Ahn SN, Kwon SJ, Suh JP, Kang KH, Kim HJ, Song MT, Hwang HG, Moon HP (2001) Identification of introgressions in a backcross progeny derived from the cross between Oryza sativa x and O. grandiglumis. Korean J. Breed 33:318-323
  2. Bai D, Brandle J, Reeleder R (1997) Genetic diversity in North American ginseng (Panax quinquefollus L.) grown in Ontario detected by RAPD analysis. Genome 40:11-115
  3. Boehm CL, Harrison HC, Nienhuis J, Jung G (1999) Organization of American and Asian ginseng germplasm using randomly amplified polymorphic DNA(RAPD) markers. Soc. Hort. Sci. 124:252-256
  4. Crockett PA, Singh MB, Lee CK, Bhalla PL (2002) Genetic purity analysis of hybrid broccli (Brassica oleraea var. italica) seed using RAPD PCR. Aust. J. Agric. Res. 53:51-54 https://doi.org/10.1071/AR01022
  5. Devos KM and Cale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet. 84:567-572
  6. Heer JA, Knap HT, Mahalingam R, Shipe ER, Arelli PR, Matthews BF (1998) Molecular markers for resistance to heterodera glycines in advanced soybeen gerplasm. Mol. Breeding 4:359-367 https://doi.org/10.1023/A:1009673422067
  7. Heo KO, Chung JK, Hahn SJ (1998) Analysis of phylogenetic relationship among Korean landraces of Allium grayi by RAPD. J. Korean Soc. Hort. Sci. 39:273-277
  8. Kim JH, Yuk JA, Cha SK, Kim HH, Sung BJ, Kim SI, Choi JE (2003) Diversity of pure line of Panax ginseng based on RAPD analysis. Korean J. Medicinal Crop Sci. 11:102-108
  9. Kim JY, Choi SY, Choo BG, Ryu JH, Kwon TH, Oh DH (2000) Intrapecific relationship of Kehmannia glutinosa lines collected from Korea, Japan and China by RAPD analysis. Korean J Medicinal. Crop Sci. 8:266-273
  10. Kim KM, Sohn JD, Kato Akira, Oono Kiyoharu (1997) Analysis of a QTL associated with rice seedling growth at low temperature using RAPD markers. Korean J. Breed. 29:342-348
  11. Koller B, Lehmann A, McDermott JM, Gessler, C (1993) Identification of apple cultivars using RAPD markers. Theor. Appl. Genet. 85:901-904
  12. Kwon WS, Chung CM, Kim YT, Lee MG, Choi KT (1998) Breeding process and characteristics of KG101, a superior line of Panax ginseng C. A. Meyer. Korea J. Ginseng Sci. 22:11-17
  13. Kwon WS, Lee MG, Choi KT (2000) Breeding process and characteristics of Yunpoong, a new variety of Panax ginseng C. A. Meyer. Korea J. Ginseng Res. 24:1-7
  14. Lee MY, Mo SY, Kim DW, Oh SE, Ko BS (2001) Discrimination and genetic relationship of Adenophorae triphylla (Thunb) A. DC. var, japonica Hara and Codonopsis lanceolata Trauty using RAPD analysis. Korean J. Medicinal Crop Sci. 9:205-210
  15. Lim JD, Seong ES, Choi KJ, Kim SK, Kim MJ, Yu CY (2000) Intraspecific relationship analysis of Eleutherococcus senticosus Max. by RAPD markers. KoreanJ. Plant. Res.13:104-110
  16. Lim YP, Shin CS, Lee SJ, Youn YN, Jo JS (1993) Survey of proper primers and genetic analysis of Korean ginseng (Panax ginseng C. A. Meyer) variants using the RAPD technique. Korean J. Ginseng Sci. 17:153-158
  17. Michelmore RW, Paran I, Kessell RV (1991) A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA. 88:9828-9832 https://doi.org/10.1073/pnas.88.21.9828
  18. Mihalov JJ, Marderosian AD, Pierce JC (2000) DNA identification of commercial ginseng samples. J. Agric. Food Chem. 48:3744-3752 https://doi.org/10.1021/jf000011b
  19. Mukai Y, Suyama Y, Tsumura Y, Kawahara T, Yoshimaru H, Kondo T, Tomaru, N, Kuramoto N, Mari M (1995) A linkage map for Cryptomeria japonica based on RFLP, RAPD, and isozyme loci. Theor. Appl. Genet. 90:835-840
  20. Oelzel AR, Green A (1992) Analysis of population level variation by sequencing PCR amplified DNA. In Molecular genetic analysis of populations. A practical approach: 159-187
  21. Rowland LJ, Levi A (1994) RAPD based genetic linkage map of blue berry derived from a cross between diploid species (Vaccinum darrowi and v. ellloulii).Theor, Appl, Genet. 87:863-868
  22. Sneath PHA, Sokal RR (1973) Numarical taxonomy. Freeman WH & Co. San Francisco. USA
  23. Song YS, Tsukasa NE, Choi JH, lang YS, Choi WY, Park JH (2001) Detection of randomly amplified polymorphic DNA (RAPD) markers related to blotting, bulb color and clove adherent type of garlic (Allium sativum L,). J. Kor. Soc. Hort. Sci. 42:305-309
  24. Tochida-Komatsu Y, Asaka I, II K (2001) A Random amplified polymorphic DNA (RAPD) to assist the identification of a selected strain, Aizu-K-111 of Panax ginseng and the sequence amplified. Biol. Pharm. Bull. 24:1210-1213 https://doi.org/10.1248/bpb.24.1210
  25. Toshiharu H (1993) Determination of Genetic purity of hybrid seed in watermelon (Citrullus lanatus) and tomato (Lycopersicon esculentum) using random amplified polymorphic DNA (RAPD). Japan J. Breed. 43:367-375 https://doi.org/10.1270/jsbbs1951.43.367
  26. Yang BK, Kim DH, Kim IS, Lee YB, Suh JD, Nam JS, Jeong SJ (2001) Analysis of genetic diversity of onion germplasm using RAPD. J. Korean Soc. Hort. Sci. 42:533-539
  27. Yang DC, Kim MS (2002) DNA analysis of ginseng using the randomly amplified polymorphic DNA technique. Korean J. Intl. Agri, 14:290-296
  28. Yang X, Quiros C (1993) Identification and classification of celery cultivars with RAPD markers. Theor. Appl, Genet. 86:205-212
  29. Yu LW, Nguyen HT (1994) Genetic variation detected with RAPD marker among upland and lowland rice cultivars (Oriza sativa L,). Theor, Appl, Genet. 87:668-672