• Title/Summary/Keyword: UAV nozzle

Search Result 19, Processing Time 0.02 seconds

An Experimental Study on the Internal Flow Characteristics of a Jet Pump for the Smart UAV Fuel System (스마트무인기 연료계통 제트펌프의 내부 유동 특성에 관한 실험적 연구)

  • Lee, Yoon-Kwon;Lee, Chang-Ho;Choi, Hee-Joo;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.107-116
    • /
    • 2008
  • The jet pumps are widely used to transfer the fuel between the tanks in an aircraft fuel supply system. However detailed design procedures for determining the size of components of the jet pumps are not known so well. In this paper, the flow characteristics of the jet pump, which is applied in the fuel transfer system for the smart UAV (Unmanned Aerial Vehicle), were experimentally investigated using the acrylic jet pump model for the visualization of the internal flow. The pressure distributions within the jet pump were measured, and then the loss coefficients of each part were calculated. The effects of Reynolds number and the distances (S) between the exit of the primary nozzle and the mixing chamber entrance were investigated. In addition, cavitation phenomena were considered through the flow visualization inside the jet pump. As a conclusion from the experiment, the contraction shape of the primary nozzle has a strong effect on the loss coefficient of the nozzle and the cavitation occurrence. Cavitation starts around the nozzle exit, and then it propagates to the full flow fields of the jet pump.

Dynamic Performance Simulation of the Propulsion System for the CRW-Type UAV Using SIMULINK (SIMULINK를 이용한 CRW-type UAV 추진시스템의 동적 성능 모사에 관한 연구)

  • Kong Chang-Duk;Park Jong-Ha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-83
    • /
    • 2004
  • A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including main and rotary ducts, the nozzle subsystem including main and tip jet nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. Transient simulation performance utilized the ICV (Inter-component volume) method and simulated using the SIMULINK. Transient performance analysis was performed on 3 cases. Fuel flow schedules to accelerate from Idle to maximum rotational speed were divided into the step increase of the most severe case and ramp increase cases to avoid the overshoot of turbine inlet temperature, and variations of thrust and the turbine inlet temperature were investigated in some transient analysis cases.

Computational Investigation of the Effect of UAV Engine Nozzle Configuration on Infrared Signature (무인항공기 노즐 형상 변화에 따른 IR 신호 영향성 연구)

  • Kang, Dong-Woo;Kim, June-Young;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.779-787
    • /
    • 2013
  • The effects of various nozzle configurations on infrared signature are investigated for the purpose of analysing the infrared signature level of aircraft propulsion system. A virtual subsonic aircraft is selected and then a circular convergent nozzle, which meets the mission requirements, is designed. Convergent nozzles of different configurations are designed with different geometric profiles. Using a compressible Navier-Stokes-Fourier CFD code, an analysis of thermal flow field and nozzle surface temperature distribution is conducted. From the information of plume flow field and nozzle surface temperature distribution, IR signature of plume and nozzle surface is calculated through the narrow-band model and the RadThermIR code. Finally, qualitative information for IR signature reduction is obtained through the analysis of the effects of various nozzle configurations on IR signature.

Investigation of the 2D Convergent-Divergent Thrust Vectoring Nozzle (2D 추력편향 노즐 성능 및 유동 해석)

  • Kim, Yoon-Hee;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.483-486
    • /
    • 2009
  • An investigation of the thrust vectoring nozzle which can be applied to the supersonic variable exhaust system was performed. The maximum mach number of the model aircraft is 1.8 and mission radius is about 400Nm. The cycle analysis are performed at each operating regime of the aircraft and the specifications of the thrust vectoring nozzle were developed. Based upon the requirement of the thrust vectoring nozzle, two dimensional thrust vectoring nozzle were designed and flow analysis was conducted by deflection of the pitch and yaw angle.

  • PDF

Thermal Structural Analysis of a Duct with Heat Resistant Metal Materials for Smart UAV (고온 내열재료를 사용한 스마트 무인기 덕트의 열 구조 해석)

  • Im, J.B.;Yoon, D.Y.;Lee, K.M.;Park, J.S.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.12 no.2
    • /
    • pp.17-28
    • /
    • 2004
  • In unmanned aerial vehicle (UAV), the high temperature results from friction with the air, combustion of fuel and combustion gas of a nozzle etc. It causes serious problems in the UAV structure. The characteristic analysis of heat resistant metal and ceramic materials and creep analysis for the functionally graded material (FGM) is presented in this paper. FGM is composed of two constituent materials that are mixed up according to the specific volume fraction distribution in order to withstand high heat condition. In addition, the creep behavior of FGM applied in duct structure of an engine is analyzed.

  • PDF

Simulation of The Effective Distribution of Droplets and Numerical Analysis of The Control Drone-Only Nozzle (방제드론 전용노즐의 유효살포폭 내 액적분포 및 수치해석 시뮬레이션)

  • Jinteak Lim;Sunggoo Yoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.531-536
    • /
    • 2024
  • Control drones, which are recently classified as smart agricultural machines in the agricultural field, are striving to build smart control and automatic control systems by combining hardware and software in order to shorten working hours and increase the effectiveness of control in the aging era of rural areas. In this paper, the characteristics of the nozzle dedicated to the control drone were analyzed as a basic study for the establishment of management control and automatic control systems. In order to consider various variables such as the type of various drone models, controller, wind, flight speed, flight altitude, weather conditions, and UAV pesticide types, related studies are needed to be able to present the drug spraying criteria in consideration of the characteristics and versatility of the nozzle. Therefore, to enable the consideration of various variables, flow analysis (CFD) simulation was conducted based on the self-designed nozzle, and the theoretical and experimental values of the droplet distribution were compared and analyzed through water reduction experiments. In the future, we intend to calculate accurate scattering in consideration of various variables according to drone operation and use it in management control and automatic control systems.

Investigation of the Effects of UAV Nozzle Configurations on Aircraft Lock-on Range (무인항공기의 노즐 형상 변화가 Lock-on Range에 미치는 영향에 관한 연구)

  • Kim, Min-Jun;Kang, Dong-Woo;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.204-212
    • /
    • 2015
  • The infrared lock-on range of target aircraft plays a critical role in determining the aircraft survivability. In this investigation, the effects of various UAV engine nozzle configurations on the aircraft lock-on range were theoretically analyzed. A virtual subsonic aircraft was proposed first, based on the mission requirement and the engine performance analysis, and convergent-type nozzles were then designed. After determining thermal flow field and nozzle surface temperature distribution with the CFD code, an additional analysis was conducted to predict the IR signature. Also, atmospheric transmissivity for various latitude and seasons was calculated, using the LOWTRAN code. Finally, the lock-on and lethal envelopes were calculated for different nozzle configurations, assuming the sensor threshold of the given IR guided missile. It was shown that the maximum 55.3% reduction in lock-on range is possible for deformed nozzles with the high aspect ratio.

Steady State Operational Characteristic Analysis of the Propulsion System for the Canard Rotor Wing UAV in three different Flight Modes (비행 모드에 따른 CRW UAV 추진시스템의 정상상태 운전특성 해석)

  • 공창덕;강명철;기자영;박종하;양수석;전용민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.215-218
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed.

  • PDF

Development of the High-Accuracy Multi-Component Balance for Fluidic Thrust Vectoring Nozzle of UAV (UAV용 유체역학적 추력편향 노즐의 고 정확도 다분력 시험장치 개발)

  • Song, Myung-Jun;Chang, Hong-Been;Cho, Yong-Ho;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.142-149
    • /
    • 2013
  • The thrust vector control technique is essential for high maneuverability of unmanned aerial vehicles. In the present study, a multi-component balance was developed to quantitatively evaluate the thrust-vectoring performance of a supersonic rectangular nozzle based on the Coanda coflowing effect. Precise calibration and detailed data analysis were performed during the development. It was found that the cross-talk errors between load cells in the balance were less than 5%, and that the unwanted errors due to high-pressure supply tubes were almost negligible, which contributed to the high accuracy of the present balance design. Some preliminary test results of the thrust-vectoring performance of the present nozzle design were also obtained and analyzed.

Steady-State/Transient Performance Simulation of the Propulsion System for the Canard Rotor Wing UAV during Flight Mode Transition

  • Kong, Changduk;Kang, Myoungcheol;Ki, Jayoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.513-520
    • /
    • 2004
  • A steady-state/transient performance simulation model was newly developed for the propulsion system of the CRW (Canard Rotor Wing) type UAV (Unmanned Aerial Vehicle) during flight mode transition. The CRW type UAV has a new concept RPV (Remotely Piloted Vehicle) which can fly at two flight modes such as the take-off/landing and low speed forward flight mode using the rotary wing driven by engine bypass exhaust gas and the high speed forward flight mode using the stopped wing and main engine thrust. The propulsion system of the CRW type UAV consists of the main engine system and the duct system. The flight vehicle may generally select a proper type and specific engine with acceptable thrust level to meet the flight mission in the propulsion system design phase. In this study, a turbojet engine with one spool was selected by decision of the vehicle system designer, and the duct system is composed of main duct, rotor duct, master valve, rotor tip-jet nozzles, and variable area main nozzle. In order to establish the safe flight mode transition region of the propulsion system, steady-state and transient performance simulation should be needed. Using this simulation model, the optimal fuel flow schedules were obtained to keep the proper surge margin and the turbine inlet temperature limitation through steady-state and transient performance estimation. Furthermore, these analysis results will be used to the control optimization of the propulsion system, later. In the transient performance model, ICV (Inter-Component Volume) model was used. The performance analysis using the developed models was performed at various flight conditions and fuel flow schedules, and these results could set the safe flight mode transition region to satisfy the turbine inlet temperature overshoot limitation as well as the compressor surge margin. Because the engine performance simulation results without the duct system were well agreed with the engine manufacturer's data and the analysis results using a commercial program, it was confirmed that the validity of the proposed performance model was verified. However, the propulsion system performance model including the duct system will be compared with experimental measuring data, later.

  • PDF