Dynamic Performance Simulation of the Propulsion System for the CRW-Type UAV Using SIMULINK

SIMULINK를 이용한 CRW-type UAV 추진시스템의 동적 성능 모사에 관한 연구

  • 공창덕 (조선대학교 항공우주공학과) ;
  • 박종하 (조선대학교 항공우주공학과)
  • Published : 2004.12.01

Abstract

A Propulsion System of the CRW(Canard Rotor Wing) type UAV(Unmanned Aerial Vehicle) was composed of the turbojet engine to generate the propulsive exhaust gas, and the duct system including main and rotary ducts, the nozzle subsystem including main and tip jet nozzle for three flight modes such as lift/landing mode, low speed transition flight mode and high speed forward flight mode. Transient simulation performance utilized the ICV (Inter-component volume) method and simulated using the SIMULINK. Transient performance analysis was performed on 3 cases. Fuel flow schedules to accelerate from Idle to maximum rotational speed were divided into the step increase of the most severe case and ramp increase cases to avoid the overshoot of turbine inlet temperature, and variations of thrust and the turbine inlet temperature were investigated in some transient analysis cases.

CRW Tyre UAV 추진시스템은 수직으로 이착륙이 가능하고 고정익으로 고속 전진 비행이 가능한 개념으로 설계되었다. 이를 위해 추진시스템은 이착륙 시에는 로터를 구동시켜 수직으로 비행하고 고속 비행 시에는 로터를 정지시켜 날개로 사용하고 가스발생기에서 생성된 가스를 주 노즐로 분사하여 본래의 제트엔진으로 사용한다. ICV방법과 SIMULINK를 이용하여 천이 성능 해석을 수행하였다. 연료유량은 터빈 입구온도의 스텝과 과온 현상을 피하기 위해 램프 증가를 하였고 이에 따른 추력의 변화와 터빈 입구온도의 변화를 살펴보았다.

Keywords

References

  1. Fawke, A. J., 'Digital Computer Simulation of Gas Turbine Dynamic Behavior,' Ph.D. Thesis, University of Bristol. UK, 1970
  2. ESDU, 'Friction Losses for Fully-developed Flow in Straight Pipes,' Engineering Sciences Data Item No.66027, 1966
  3. ESDU, A. J.,'Pressure Losses in Curved Ducts: Interaction Factors for Two Bends in Series,' Engineering Sciences Data Item No.77009, 1977
  4. ESDU, 'Pressure Losses in Curved Ducts: Single Bends,' Engineering Sciences Data Item No.83037, 1983
  5. Kong, C., Kang, M., et al., 'A Study on Steady-state Performance Simulation of Smart UAV Propulsion System,' Journal of the Korean Society of Propulsion Engineers, Vol. 7, No.3, 2003, pp. 38-44
  6. Bettocchi, R., Spina, P.R. et al., 'Dynamic Modeling of Single-Shaft Industrial Gas Turbine,' ASME 96-GT-332, 1996
  7. Crosa, G., and F. Pittaluga et al..' Heavy-Duty Gas Turbine Plant Aerothermodynamic Simulation Using SIMULINK,' Transaction of the ASME, 1998
  8. Kim S., 'Gas Turbine-Dynamic Simulation Using SIMULINK," MSc Thesis, SME, Cranfield University, 1999
  9. Math Works, 'SIMULINK: Dynamic System Simulation for MATLAB, Ver. 2,' The Math Works, Inc., USA, 1997