• Title/Summary/Keyword: UAV images

Search Result 297, Processing Time 0.022 seconds

DSM Generation and Accuracy Analysis from UAV Images on River-side Facilities (UAV 영상을 활용한 수변구조물의 DSM 생성 및 정확도 분석)

  • Rhee, Sooahm;Kim, Taejung;Kim, Jaein;Kim, Min Chul;Chang, Hwi Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.183-191
    • /
    • 2015
  • If the damage analysis on river-side facilities such as dam, river bank structures and bridges caused by disasters such as typhoon, flood, etc. becomes available, it can be a great help for disaster recovery and decision-making. In this research, We tried to extract a Digital Surface Model (DSM) and analyze the accuracy from Unmanned Air Vehicle (UAV) images on river-side facilities. We tried to apply stereo image-based matching technique, then extracted match results were united with one mosaic DSM. The accuracy was verified compared with a DSM derived from LIDAR data. Overall accuracy was around 3m of absolute and root mean square error. As an analysis result, we confirmed that exterior orientation parameters exerted an influence to DSM accuracy. For more accurate DSM generation, accurate EO parameters are necessary and effective interpolation and post process technique needs to be developed. And the damage analysis simulation with DSM has to be performed in the future.

Image Georeferencing using AT without GCPs for a UAV-based Low-Cost Multisensor System (UAV 기반 저가 멀티센서시스템을 위한 무기준점 AT를 이용한 영상의 Georeferencing)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.249-260
    • /
    • 2009
  • The georeferencing accuracy of the sensory data acquired by an aerial monitoring system heavily depends on the performance of the GPS/IMU mounted on the system. The employment of a high performance but expensive GPS/IMU unit causes to increase the developmental cost of the overall system. In this study, we simulate the images and GPS/IMU data acquired by an UAV-based aerial monitoring system using an inexpensive integrated GPS/IMU of a MEMS type, and perform the image georeferencing by applying the aerial triangulation to the simulated sensory data without any GCP. The image georeferencing results are then analyzed to assess the accuracy of the estimated exterior orientation parameters of the images and ground points coordinates. The analysis indicates that the RMSEs of the exterior orientation parameters and ground point coordinates is significantly decreased by about 90% in comparison with those resulted from the direct georeferencing without the aerial triangulation. From this study, we confirmed the high possibility to develop a low-cost real-time aerial monitoring system.

A Study on the Accuracy Evaluation of UAV Photogrammetry using Oblique and Vertical Images (연직사진과 경사사진을 함께 이용한 UAV 사진측량의 정확도 평가 연구)

  • Cho, Jungmin;Lee, Jongseok;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.41-46
    • /
    • 2021
  • As data acquisition using unmanned aerial vehicles is widely used, as one of the ways to increase the accuracy of photogrammetry using unmanned aerial vehicles, a method of inputting both vertical and oblique images in bundle adjustment of aerial triangulation has been proposed. In this study, in order to find a suitable method for increasing the accuracy of photogrammetry, the accuracy of the case of adjusting the oblique images taken at different shooting angles and the case of adjusting the oblique images with different shooting angles at the same time with the vertical images were compared. As a result of the study, it was found that the error of the checkpoint decreases as the angle of the input oblique images increases. In particular, when the vertical images and oblique images are used together, the height error decreases significantly as the angle of the oblique images increases. The current 『Aerial Photogrammetry Work Regulation』 requires RMSE (Root Mean Square Error), which is the same as GSD (Ground Spatial Distance) of a vertical image. When using an oblique images with a shooting angle of 50°, a result close to this standard is obtained. If the vertical images and the 50° oblique images were adjusted at the same time, the work regulations could be satisfied. Using the results of this study, it is expected that photogrammetry using low-cost cameras mounted on unmanned aerial vehicles will become more active.

Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification (산불 피해강도 분류를 위한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석)

  • Shin, Jung-Il;Seo, Won-Woo;Kim, Taejung;Woo, Choong-Shik;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1095-1106
    • /
    • 2019
  • Damage of forest fire should be investigated quickly and accurately for recovery, compensation and prevention of secondary disaster. Using remotely sensed data, burn severity is investigated based on the difference of reflectance or spectral indices before and after forest fire. Recently, the use of high resolution satellite and UAV imagery is increasing, but it is not easy to obtain an image before forest fire that cannot be predicted where and when. This study tried to analyze availability of high-resolution images and supervised classifiers on the burn severity classification. Two supervised classifiers were applied to the KOMPSAT-3A image and the UAV multispectral image acquired after the forest fire. The maximum likelihood (MLH) classifier use absolute value of spectral reflectance and the spectral angle mapper (SAM) classifier use pattern of spectra. As a result, in terms of spatial resolution, the classification accuracy of the UAV image was higher than that of the satellite image. However, both images shown very high classification accuracy, which means that they can be used for classification of burn severity. In terms of the classifier, the maximum likelihood method showed higher classification accuracy than the spectral angle mapper because some classes have similar spectral pattern although they have different absolute reflectance. Therefore, burn severity can be classified using the high resolution multispectral images after the fire, but an appropriate classifier should be selected to get high accuracy.

Evaluation of Resolution of UAV-Image Using Circular Target (Circular target을 이용한 무인항공영상의 해상도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.474-480
    • /
    • 2019
  • We propose a method to evaluate a Modulation Transfer Function (MTF) using a circular target. In addition, a MATLAB GUI-based resolution analysis tool was developed to enhance the reliability of UAV image quality and the efficiency of the work. For this purpose, images were taken with an FC-6310 during flights at altitudes of 80 m, 120 m, and 150 m and by an iXM-100 at altitudes of 150 m, 200 m, and 400 m. The MTFs of UAV images were compared with traditional photogrammetry by measuring and analyzing MTFs on images taken by the UltraCAM Eagle Mark-2 sensor at a flight altitude of 1000 m. The results show that ${\sigma}MTF$ of the FC-6310 were 0.431(80 m), 0.524(120 m), and 0.699(150 m), and those of the iXM-100 were 0.332(150 m), 0.393(200 m), and 0.631(400 m), respectively. At the altitude of 150 m, the image quality of the iXM-100, which has a high-performance camera, was very high, and the effect of the camera performance on the image quality was confirmed. In addition, the ${\sigma}MTF$ of the UltraCAM Eagle Mark-2 was 0.711 due to the high flight altitude. This was the worst value among all UAV images. However, the ${\sigma}MTF$ of the FC-6310 at 150-m altitude was 0.699, which is almost the same as that of a manned aerial image.

Comparison of Match Candidate Pair Constitution Methods for UAV Images Without Orientation Parameters (표정요소 없는 다중 UAV영상의 대응점 추출 후보군 구성방법 비교)

  • Jung, Jongwon;Kim, Taejung;Kim, Jaein;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.647-656
    • /
    • 2016
  • Growth of UAV technology leads to expansion of UAV image applications. Many UAV image-based applications use a method called incremental bundle adjustment. However, incremental bundle adjustment produces large computation overhead because it attempts feature matching from all image pairs. For efficient feature matching process we have to confine matching only for overlapping pairs using exterior orientation parameters. When exterior orientation parameters are not available, we cannot determine overlapping pairs. We need another methods for feature matching candidate constitution. In this paper we compare matching candidate constitution methods without exterior orientation parameters, including partial feature matching, Bag-of-keypoints, image intensity method. We use the overlapping pair determination method based on exterior orientation parameter as reference. Experiment results showed the partial feature matching method in the one with best efficiency.

Tracking of Walking Human Based on Position Uncertainty of Dynamic Vision Sensor of Quadcopter UAV (UAV기반 동적영상센서의 위치불확실성을 통한 보행자 추정)

  • Lee, Junghyun;Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The accuracy of small and low-cost CCD cameras is insufficient to provide data for precisely tracking unmanned aerial vehicles (UAVs). This study shows how a quad rotor UAV can hover on a human targeted tracking object by using data from a CCD camera rather than imprecise GPS data. To realize this, quadcopter UAVs need to recognize their position and posture in known environments as well as unknown environments. Moreover, it is necessary for their localization to occur naturally. It is desirable for UAVs to estimate their position by solving uncertainty for quadcopter UAV hovering, as this is one of the most important problems. In this paper, we describe a method for determining the altitude of a quadcopter UAV using image information of a moving object like a walking human. This method combines the observed position from GPS sensors and the estimated position from images captured by a fixed camera to localize a UAV. Using the a priori known path of a quadcopter UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated quadcopter UAV's altitude. Since the equations are based on the geometric constraint equation, measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. Its performance is verified by a computer simulation and experiments.

Estimation of Highland Kimchi Cabbage Growth using UAV NDVI and Agro-meteorological Factors

  • Na, Sang-Il;Hong, Suk-Young;Park, Chan-Won;Kim, Ki-Deog;Lee, Kyung-Do
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.420-428
    • /
    • 2016
  • For more than 50 years, satellite images have been used to monitor crop growth. Currently, unmanned aerial vehicle (UAV) imagery is being assessed for analyzing within field spatial variability for agricultural precision management, because UAV imagery may be acquired quickly during critical periods of rapid crop growth. This study refers to the derivation of growth estimating equation for highland Kimchi cabbage using UAV derived normalized difference vegetation index (NDVI) and agro-meteorological factors. Anbandeok area in Gangneung, Gangwon-do, Korea is one of main districts producing highland Kimchi cabbage. UAV imagery was taken in the Anbandeok ten times from early June to early September. Meanwhile, three plant growth parameters, plant height (P.H.), leaf length (L.L.) and outer leaf number (L.N.), were measured for about 40 plants (ten plants per plot) for each ground survey. Six agro-meteorological factors include average temperature; maximum temperature; minimum temperature; accumulated temperature; rainfall and irradiation during growth period. The multiple linear regression models were suggested by using stepwise regression in the extraction of independent variables. As a result, $NDVI_{UAV}$ and rainfall in the model explain 93% of the P.H. and L.L. with a root mean square error (RMSE) of 2.22, 1.90 cm. And $NDVI_{UAV}$ and accumulated temperature in the model explain 86% of the L.N. with a RMSE of 4.29. These lead to the result that the characteristics of variations in highland Kimchi cabbage growth according to $NDVI_{UAV}$ and other agro-meteorological factors were well reflected in the model.

3D Positioning Using a UAV Equipped with a Stereo Camera (스테레오 카메라를 탑재한 UAV를 이용한 3차원 위치결정)

  • Park, Sung-Geun;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.185-198
    • /
    • 2021
  • Researches using UAVs are being actively conducted in the field of quickly constructing 3D spatial information in small areas. In this study, without using ground control points, a stereo camera was mounted on a UAV to collect images and quickly construct three-dimensional positions through image matching, bundle adjustment, and the determination of a scale factor. Through the experiment, when bundle adjustment was performed using stereo constraints, the root mean square error was 1.475m, and when absolute orientation was performed in consideration of a scale, it was found to be 0.029m. Through this, it was found that when using the data processing method of a UAV equipped with a stereo camera proposed in this study, high-accuracy 3D spatial information can be constructed without using ground control points.

Multi Point Cloud Integration based on Observation Vectors between Stereo Images (스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합)

  • Yoon, Wansang;Kim, Han-gyeol;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.727-736
    • /
    • 2019
  • In this paper, we present how to create a point cloud for a target area using multiple unmanned aerial vehicle images and to remove the gaps and overlapping points between datasets. For this purpose, first, IBA (Incremental Bundle Adjustment) technique was applied to correct the position and attitude of UAV platform. We generate a point cloud by using MDR (Multi-Dimensional Relaxation) matching technique. Next, we register point clouds based on observation vectors between stereo images by doing this we remove gaps between point clouds which are generated from different stereo pairs. Finally, we applied an occupancy grids based integration algorithm to remove duplicated points to create an integrated point cloud. The experiments were performed using UAV images, and our experiments show that it is possible to remove gaps and duplicate points between point clouds generated from different stereo pairs.