• Title/Summary/Keyword: UAV design

Search Result 393, Processing Time 0.025 seconds

Design and Implementation of UAV System for Autonomous Tracking

  • Cho, Eunsung;Ryoo, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.829-842
    • /
    • 2018
  • Unmanned Aerial Vehicle (UAV) is diversely utilized in our lives such as daily hobbies, specialized video image taking and disaster prevention activities. New ways of UAV application have been explored recently such as UAV-based delivery. However, most UAV systems are being utilized in a passive form such as real-time video image monitoring, filmed image ground analysis and storage. For more proactive UAV utilization, there should be higher-performance UAV and large-capacity memory than those presently utilized. Against this backdrop, this study described the general matters on proactive software platform and high-performance UAV hardware for real-time target tracking; implemented research on its design and implementation, and described its implementation method. Moreover, in its established platform, this study measured and analyzed the core-specific CPU consumption.

Damage Tolerant Design for the Tilt Rotor UAV (틸트 로터형 무인항공기의 손상허용 설계)

  • Park, Young Chul;Im, Jong Bin;Park, Jung Sun
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • The Damage Tolerant Design is developed to help alleviate structural failure and cracking problems in aerospace structures. Recently, the Damage Tolerant Design is required and recommended for most of aircraft design. In this paper, the damage tolerant design is applied to tilt rotor UAV. First of all, the fatigue load spectrum for the tilt rotor UAV is developed and fatigue analysis is performed for the flaperon joint which has FCL (fatigue critical location). Tilt rotor UAV has two modes: helicopter mode when UAV is taking off and landing; fixed wing mode when the tilt rotor UAV is cruising. To make fatigue load spectrum, FELIX is used for helicopter mode. TWIST is used for fixed wing mode. Fatigue analysis of flaperon joint is performed using fatigue load spectrum. E-N curve approach is used for picking crack initiation point. The LEFM(Linear Elastic Fracture Method) is considered for analyzing crack growth or propagation. Finally, including the crack initiation and propagation, the fatigue life is evaluated. Therefore the Damage Tolerant Design can be done.

  • PDF

Study on Practical Design of Datalink in Interoperable UAV Systems (무인기 상호운용시스템에서 실용적인 데이터링크 설계방안 연구)

  • Kyu-Hwan Lee;Myeonggeun Oh;Jihoon Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.51-59
    • /
    • 2024
  • Uumanned aerial vehicle(UAV) systems have been used in various fields including industry and military. According to increasing the number of UAVs, the attention on interoperable UAV systems is increasing. In this paper, we propose the practical design of datalink in interoperable UAV systems. For practical design, we firstly review the operational scenarios in the interoperable UAV system. We then propose the system model of the datalink in interoperable UAV system. Consequently, the technical components such as the design of the network, the link management, the support of the multicast transmission, the support for autonomous mission and flight safety, and the datalink security are derived and reviewed for the practical design.

Study on Flight Test of Small Solar-Powered UAV (소형 태양광 무인 항공기의 비행실험에 관한 연구)

  • An, Il-Young;Bae, Jae-Sung;Park, Sang-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

Modeling and Autopilot Design of Blended Wing-Body UAV

  • Min, Byoung-Mun;Shin, Sung-Sik;Shim, Hyun-Chul;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2008
  • This paper describes the modeling and autopilot design procedure of a Blended Wing-Body(BWB) UAV. The BWB UAV is a tailless design that integrates the wing and the fuselage. This configuration shows some aerodynamic advantages of lower wetted area to volume ratio and lower interference drag as compared to conventional type UAV. Also, BWB UAV may be increase payload capacity and flight range. However, despite of these benefits, this type of UAV presents several problems related to flying qualities, stability, and control. In this paper, the detailed modeling procedure of BWB UAV and stability analysis results using the linearized model at trim condition are represented. Finally, we designed the autopilot of BWB UAV based on a simple control allocation scheme and evaluated its performance through nonlinear simulation.

Light Source Target Detection Algorithm for Vision-based UAV Recovery

  • Won, Dae-Yeon;Tahk, Min-Jea;Roh, Eun-Jung;Shin, Sung-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • In the vision-based recovery phase, a terminal guidance for the blended-wing UAV requires visual information of high accuracy. This paper presents the light source target design and detection algorithm for vision-based UAV recovery. We propose a recovery target design with red and green LEDs. This frame provides the relative position between the target and the UAV. The target detection algorithm includes HSV-based segmentation, morphology, and blob processing. These techniques are employed to give efficient detection results in day and night net recovery operations. The performance of the proposed target design and detection algorithm are evaluated through ground-based experiments.

Aircraft design and manufacturing for UAV (무인 항공기 기체 설계 및 제작)

  • Hwang, Hyun-Su;Heo, Seop;Kim, Jong-Hyuk;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.38-43
    • /
    • 2008
  • Since UAV has been developed, the demand of uav is increasing because of the advantage which are no injury people and less cost. Also, it has easy maintenance and adaptation because it will carry out each mission by only change payload. So, in this study, we performed aircraft design and manufacturing which it could have maximum payload weight when consider each mission has different weight of payload

  • PDF

UAV Autopilot Design under External Disturbances

  • Eun, Youn-Ju;Hyochoong Bang;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.40.3-40
    • /
    • 2002
  • Unmanned Aerial Vehicle(UAV) needs autonomous flight capability to accomplish various mission objectives. For this objective, the autopilot is a key element in the UAV system design. The principal goal of autopilot is to guide the aircraft under varying external disturbances throughout the mission phases. The external disturbances include gravity effect, wind gust, and other unexpected obstacles. The gust affects the aircraft flight performance to a significant extent. UAV's low speed, light weight, and the absence of human judgment makes un predictable gust more dangerous. Autopilot design in general takes the gust effect into account to satisfy flight performance requirement. In this study..

  • PDF

Flight Loads Analysis of Smart UAV (스마트 무인기 비행하중 해석)

  • Shin, Jeong-Woo;Lee, Sang-Wook;Kim, Sung-Joon;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.513-518
    • /
    • 2004
  • KARI(Korea Aerospace Research Institute) has developed smart unmaned aerial vehicle(UAV) since 2002. Smart UAV has tilt rotor configuration which can take off and land vertically. For designing and developing smart UAV, it is necessary to obtain design loads. ARGON which use the panel method is multidisciplinary aircraft design program developed and modified by KARI and TsAGI. Panel method is very useful to obtain aerodynamic loads, so it have been used widely for aircraft loads analysis. For flight loads analysis, we have to prepare regulations and load conditions, and then design aerodynamic panel model, mass model and structure model. In this paper, we introduce the flight loads analysis procedure briefly, and show the smart UAV loads analysis procedure and result using ARGON.

  • PDF

Design of Multiple Myo-Based UAV Controller (다중 Myo 기반의 UAV 제어기 설계)

  • Kim, Hyeok;Kim, Donguk;Sung, Yunsick
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • Given that the utilization of Unmanned Aerial Vehicles (UAVs) is recently increased, a variety of UAV control methods are being applied. In general, it has been used a lot to directly control a UAV via manipulator. However, tangible user interface is required to control UAVs accurately. This paper proposes a method for controlling an UAV based on multiple Myos. The UAV is connected to a ground control station and then controlled by Myos. Intuitive control is possible by controlling the UAV using tangible user interface.