• Title/Summary/Keyword: UAV data link

Search Result 51, Processing Time 0.021 seconds

Development of FCC Redundancy System for Tiltrotor UAV (틸트로터 무인기 비행제어컴퓨터 이중화 시스템 개발)

  • Park, Bum-Jin;Kang, Young-Shin;Yoo, Chang-Sun;Cho, Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Flight control computer of tiltrotor UAV was designed by redundancy system with primary and secondary channels to improve reliability. The redundancy functions consist of channel switching and data recovery. The channel switching function consists of software method by using cross channel data link and hardware method by using watchdog timer. The data recovery is the function to maintain flight condition when the flight control computer is restarted exceptionally in operation. The redundancy system was verified by flight control computer bench test, system integration test and HILS test. This paper describes the redundancy function of tiltrotor UAV flight control computer and test-verification method.

A Study on UAV DoA Estimation Accuracy Improvement using Monopulse Tracking (모노펄스 추적을 이용한 무인기 DoA 추정정밀도 향상 방안에 관한 연구)

  • Son, Eutum-Hyotae;Yoon, Chang-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1121-1126
    • /
    • 2017
  • Various studies such as INS(: Inertial Navigation System) are conducting to estimate the position of UAV, because the GPS information of UAV is at risk like the GPS jamming. The position estimation using DoA and RTT are used to apply many radar systems, and that process can be applied in datalink of UAV. The general monopulse feed in UAV datalink is Multi-horn, because of the wide BW(: Band Width) and frequency range. And it needs wide SNR range of tracking because of the limited transmit power of airborne unit. The estimation error of position increase at low SNR, and the DoA is valid in only 3dB beam width but high SNR causes false of mainlobe detection because of large sidelobe. In this paper, We propose the method to achieve higher accuracy of DoA estimation on low SNR and review some idea that able to detect mainlobe.

A Study on the System Configuration and Communication Equipment Operation for Mission and Control of Small UAV (소형 무인항공기의 임무 및 제어를 위한 시스템 구성과 통신 장비 운용에 대한 연구)

  • Ha, Young-Seok
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.11
    • /
    • pp.118-124
    • /
    • 2019
  • As Unmanned Aerial Vehicles technology has been widespread, various types of unmanned aircraft and mission equipment have been developed in line with mission diversification. Especially in Korea, small unmanned aerial vehicles have been actively developed. In addition, flight control system and mission equipment interface system for effective control of small unmanned aerial vehicles, efficient communication system configuration and operation for transmission to ground operated systems by processing data are required. This paper addresses efficient system structure and operation of communication equipment for missions and control of small unmanned aerial vehicles.

An Analysis of UAV operation altitude according to Line-Of-Sight communication range. (가시선 통신거리에 따른 무인항공기 운용 고도 분석)

  • Choi, Jun-su;Hur, Chang-wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.783-785
    • /
    • 2013
  • In this paper, analyzed of UAVs operation altitude and range from the point of view of the data link. UAVs operation altitude is determined by the specification of the mission equipment and operational purposes. The link-of-sight analysis of data link equipment before deciding the unmanned aircraft operation altitude conditions should be considered. If GDT=0m installation then 32dBi antenna apply 13,724 meter is operation altitude. 44dBi antenna 6,657 meters. Operating altitude perspective, high-gain antenna is recommended of the long range communication.

  • PDF

A Study on UAV Flight Control System HILS Test Environment (무인항공기 비행제어 HILS 시험환경 연구)

  • Byun, Jinku;Hur, Gi-Bong;Lee, KwangHyun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.316-323
    • /
    • 2016
  • A UAV(Unmanned Aerial Vehicle) flies along pre-programed navigation points(in-flight, take-off, or landing) automatically without pilot input. Even though UAVs fly differently from general piloted aircraft as the pilot controls the aircraft from a ground station through means of a data-link system. Occasionally, the data-link connection can be lost for any number of reasons, in which case, the FLCC(Flight control Computer) must automatically switch to autopilot to continue flying. Hence, the FLCC is a flight-critical component that must be throughly tested and validated. This paper discusses the development of a HILS(Hardware in the Loop Simulation) test environment designed to simulate real flight conditions to verify the FLCC satisfies flying quality requirements and maintains robustness despite any potential malfunctions or emergency situations.

Development of an ACMI Simulator Based on LVC Integrating Architecture (LVC 통합 아키텍처 기반 실기동급 ACMI 모의기 개발)

  • Jang, Youngchan;Oh, Jihyun;Myung, Hyunsam;Kim, Cheonyoung;Hong, Youngseok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.540-547
    • /
    • 2015
  • This paper describes development contents and flight tests of an ACMI simulator based on LVC integrating architecture. ACMI is the system that provides air combat training and ground bombing training for improving fighting efficiency, that is the live simulation involving real people to operate real systems. ACMI simulator was developed for technic acquisition of LVC interoperability by using data link communication. ACMI simulator simulated maneuvering of a fighter by operating an UAV, a fighter can be distinguished from an UAV by maneuvering characteristics. This study proposes maneuvering simulation method by using flight data of the UAV, and performed its flight test for verifying similarity of fighter maneuvering.

Optimum Placement and Shape of UHF Monopole Antenna Mounted on UAV (무인항공기에 장착된 UHF 모노폴 안테나의 최적 위치 및 형상)

  • Choi, Jaewon;Kim, Jihoon;Chung, Eulho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.46-51
    • /
    • 2013
  • In this paper, the optimum placement and shape of UHF antenna on the unmanned aerial vehicle (UAV) are analyzed by using the electromagnetic (EM) simulation on the various locations. The FEKO was used for the EM-simulation. In order to reduce the complexity of simulation and minimize the runtime and memory usage, the composite aircraft structure is simplified as the PEC model excluding the radome structure. The simulation was performed on the wing and ventral fin of UAV, and the antenna shape used the monopole, dipole, and bent monopole antennas. When the monopole antenna is mounted under the wing, two antennas need to be mounted under the right and left wings, and those antennas have to be switched as the direction of UAV wing to the line of sight (LOS) data-link (DL) ground antenna. In the case of mounting under the ventral fin, one antenna can be used regardless of the direction of UAV wing to the LOS DL ground antenna. Also, the antenna gain is improved by the blockage reduction. The antenna gain is further improved by using the bent monopole antenna. The optimum solution of UHF antenna placement and shape on UAV is to mount the bent monopole antenna under the ventral fin.

Coverage Prediction for Aerial Relay Systems based on the Common Data Link using ITU Models (ITU 모델을 이용한 공용데이터링크 기반의 공중중계 시스템의 커버리지 예측)

  • Park, Jae-Soo;Song, Young-Hwan;Choi, Hyo-Gi;Yoon, Chang-Bae;Hwang, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • In this paper, we predicted the propagation loss for the air-to-ground (A2G) channel between the ground control system and the unmanned aerial vehicle (UAV) using the prediction model for the aircraft recommended by the International Telecommunication Union (ITU). We analyzed the network coverage of the aerial relay system based on the medium altitude UAVs by expanding it into the air-to-air (A2A) channel. Climate and geographic factors in Korea were used to predict propagation loss due to atmospheres. We used the measured data published by the Telecommunication Technology Association (TTA) for regional rainfall-rate and effective earth radius factors to increase accuracy. In addition, the aerial relay communication system used the key parameter of the common data link (CDL) system developed in Korea recently. Prediction results show that the network coverage of the aerial relay system broadens at higher altitude.

The antenna azimuth correction method for a special purpose mobile video terminal tracking antenna system implementation (특수목적을 위한 이동형 영상 터미널 장비의 추적안테나 시스템에 적용하기 위한 방위각보정 알고리즘 구현)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2541-2546
    • /
    • 2013
  • In this paper, we proposed on the azimuth correction method for a line-of-sight data-link tracking antenna system. Tracking antenna system is essential to maintain line-of-sight between moving object and data-link equipment. In order to calculate the azimuth and elevation between the moving object and antenna system, we used GPS data. also to match the each coordinate systems, we used geomagnetic sensor or beacon. However, the geomagnetic disturbance-prone terrain in places difficult to correct calibration. The first step, finds the location of the strongest RF signal, we should remember the difference between the reference point and the detected position of the antenna. The second step, we could communicate each other. And the azimuth angle is calculated by GPS values. Despite the geomagnetic interference, we can correct the azimuth angle quickly and easily.