• Title/Summary/Keyword: UAV Photogrammetry

Search Result 125, Processing Time 0.025 seconds

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.

Development of Classification Technique of Point Cloud Data Using Color Information of UAV Image

  • Song, Yong-Hyun;Um, Dae-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.4
    • /
    • pp.303-312
    • /
    • 2017
  • This paper indirectly created high density point cloud data using unmanned aerial vehicle image. Then, we tried to suggest new concept of classification technique where particular objects from point cloud data can be selectively classified. For this, we established the classification technique that can be used as search factor in classifying color information in point cloud data. Then, using suggested classification technique, we implemented object classification and analyzed classification accuracy by relative comparison with self-created proof resource. As a result, the possibility of point cloud data classification was observable using the image's information. Furthermore, it was possible to classify particular object's point cloud data in high classification accuracy.

Speeding up the KLT Tracker for Realtime Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 KLT 트랙커의 속도개선)

  • Supannee, Tanathong;Lee, Im-Pyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.77-80
    • /
    • 2010
  • The demand for human security significantly promotes the development of surveillance applications using a multi-sensor integrated UAV system. For more sophisticated operations, the system should provide a sequence of images rectified in a ground coordinate system in realtime. This rectification requires accurate position and attitude of the camera at the time of exposure of each image, which can be estimated through an Aerial Triangulation process using the GPS/INS data and tie points between adjacent images. In this work, the KLT tracker is utilized to obtain the tie points. To satisfy the realtime requirements, we present an approach to speed up the tracker by supplying the initial guessed positions of tie points based on the exterior orientation. The experimental results show that, when the guessed positions are supplied, the KLT tracker consumed less computational time than the ordinary KLT which is more suitable to be incorporated into the realtime image georeferencing process.

  • PDF

Utilization of UAV Photogrammetry for Actual Condition Survey of Government Owned Lands (국·공유지 실태조사를 위한 UAV 사진측량의 활용성 검토)

  • LEE, Si-Wook;LEE, Jin-Duk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.80-91
    • /
    • 2021
  • The purpose of this study is to present the applicability to the effective survey into the actual condition of lands such as analysis of occupied location of government owned lands based on orthoimages created from aerial photographs taken by UAV. The boundary point coordinates and areas of the parcels were observed respectively by VRS-GNSS surveying and orthoimages for each land use of two categories of land, i.e. building site and farmland. As a result of comparing boundary point coordinates and areas extracted from UAV orthoimages with VRS-GNSS surveying data which were used as reference data, the RMS error of the coordinates for the boundary points was ±0.074m for both X and Y in the building site, and ±0.150m and ±0.127m for the X and Y respectively in the farmland. The positional error of the boundary point was 1.7~ 2 times higher in the farmland than in the building site where the boundary points were relatively clear. The RMS error of ±8.964㎡ of areas in the farmland was 4.7 times higher than that of ±1.898㎡ of areas in the building site. The area errors of all 22 parcels measured from the orthoimage were found to be within the allowed error range, indicating that it is feasible to apply the orthoimage generated by UAV to survey of government owned lands in terms of accuracy.

Construction of Coastal Surveying Database and Application Using Drone

  • Park, Joon Kyu;Lee, Keun Wang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.197-202
    • /
    • 2018
  • Drone has been continuously studied in the field of geography and remote sensing. The basic researches have been actively carried out before the utilization in the field of photogrammetry. In Korea, it is necessary to study the actual way of research in accordance with the drone utilization environment. In particular, analysis on the characteristics of DSM (Digital Surface Model) generated through drone are needed. In this study, the characteristic of drone DSM as a data acquisition method was analyzed for coastal management. The coastal area was selected as the study area, and data was acquired by using drone. As a result of the study, the terrain model and the ortho image of coastal area were produced. The accuracy of UAV (Unmanned Aerial Vehicle) results were very high about 10cm at check points. However, concavo-convex shapes appeared in very flat areas such as tidal flats and roads. To correct this terrain model distortion, a new terrain model was created through data processing and the results were evaluated. If additional studies are carried out and the construction and analysis of terrain model using drone image is done, drone data for coastal management will be available.

Acquisition of Subcentimeter GSD Images Using UAV and Analysis of Visual Resolution (UAV를 이용한 Subcentimeter GSD 영상의 취득 및 시각적 해상도 분석)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.563-572
    • /
    • 2017
  • The purpose of the study is to investigate the effect of flight height, flight speed, exposure time of camera shutter and autofocusing on the visual resolution of the image in order to obtain ultra-high resolution images with a GSD less than 1cm. It is also aimed to evaluate the ease of recognition of various types of aerial targets. For this purpose, we measured the visual resolution using a 7952*5304 pixel 35mm CMOS sensor and a 55mm prime lens at 20m intervals from 20m to 120m above ground. As a result, with automatic focusing, the visual resolution is measured 1.1~1.6 times as the theoretical GSD, and without automatic focusing, 1.5~3.5 times. Next, the camera was shot at 80m above ground at a constant flight speed of 5m/s, while reducing the exposure time by 1/2 from 1/60sec to 1/2000sec. Assuming that blur is allowed within 1 pixel, the visual resolution is 1.3~1.5 times larger than the theoretical GSD when the exposure time is kept within the longest exposure time, and 1.4~3.0 times larger when it is not kept. If the aerial targets are printed on A4 paper and they are shot within 80m above ground, the encoded targets can be recognized automatically by commercial software, and various types of general targets and coded ones can be manually recognized with ease.

Accuracy Assessment of Aerial Triangulation of Network RTK UAV (네트워크 RTK 무인기의 항공삼각측량 정확도 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.663-670
    • /
    • 2020
  • In the present study, we assessed the accuracy of aerial triangulation using a UAV (Unmanned Aerial Vehicle) capable of network RTK (Real-Time Kinematic) survey in a disaster situation that may occur in a semi-urban area mixed with buildings. For a reliable survey of check points, they were installed on the roofs of buildings, and static GNSS (Global Navigation Satellite System) survey was conducted for more than four hours. For objective accuracy assessment, coded aerial targets were installed on the check points to be automatically recognized by software. At the instance of image acquisition, the 3D coordinates of the UAV camera were measured using VRS (Virtual Reference Station) method, as a kind of network RTK survey, and the 3-axial angles were achieved using IMU (Inertial Measurement Unit) and gimbal rotation measurement. As a result of estimation and update of the interior and exterior orientation parameters using Agisoft Metashape, the 3D RMSE (Root Mean Square Error) of aerial triangulation ranged from 0.153 m to 0.102 m according to the combination of the image overlap and the angle of the image acquisition. To get higher aerial triangulation accuracy, it was proved to be effective to incorporate oblique images, though it is common to increase the overlap of vertical images. Therefore, to conduct a UAV mapping in an urgent disaster site, it is necessary to acquire oblique images together rather than improving image overlap.

Evaluation of Possibility of Large-scale Digital Map through Precision Sensor Modeling of UAV (무인항공기 정밀 센서모델링을 통한 대축척 수치도화 가능성 평가)

  • Lim, Pyung-chae;Kim, Han-gyeol;Park, Jimin;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1393-1405
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicle) can acquire high-resolution images due to low-altitude flight, and it can be photographed at any time. Therefore, the UAV images can be updated at any time in map production. Due to these advantages, studies on the possibility of producing large-scale digital maps using UAV images are actively being conducted. Precise digital maps can be used as base data for digital twins or smart cites. For producing a precise digital map, precise sensor modeling using GCPs (Ground Control Points) must be preceded. In this study, geometric models of UAV images were established through a precision sensor modeling algorithm developed in house. Then, a digital map by stereo plotting was produced to evaluate the possibility of large-scale digital map. For this study, images and GCPs were acquired for Ganseok-dong, Incheon and Yeouido, Seoul. As a result of precision sensor modeling accuracy analysis, high accuracy was confirmed within 3 pixels of the average error of the checkpoints and 4 pixels of the RMSE was confirmed for the two study regions. As a result of the mapping accuracy analysis, it satisfied the 1:1,000 mapping accuracy announced by the NGII (National Geographic information Institute). Therefore, the precision sensor modeling technology suggested the possibility of producing a 1:1,000 large-scale digital map by UAV images.