• Title/Summary/Keyword: UAV : Unmanned Aerial Vehicle

Search Result 802, Processing Time 0.028 seconds

Design and Implementation of Mobile Network Based Long-Range UAV Operational System for Multiple Clients (모바일 네트워크를 이용한 복수의 클라이언트용 무인항공기 원거리 운용 시스템 설계 및 구현)

  • Park, Seong-hyeon;Song, Joon-beom;Roh, Min-shik;Song, Woo-jin;Kang, Beom-soo
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.217-223
    • /
    • 2015
  • This paper describes the design and implementation of a network system for UAV for multiple clients that enables long-range operation based on a commercial mobile network. A prototype data modem is developed with a commercial embedded M2M module in order to provide an access to the mobile network. A central server with a database is constructed to record all of real-time flight and video data and communicate with a ground control system. A GCS is developed for the central control, the single UAV and the smart phone version to be used for different purposes. Performance tests were progressed for data delay, video frame rate and state of clients. Flight tests were also performed to verify the reliability of the modem with respect to altitude.

Design of Compact Q-Band Waveguide-to-Microstrip Transition for UAV Millimeter-Wave Radiometer Applications (무인항공기 밀리미터파 라디오미터 응용을 위한 소형 Q대역 도파관-마이크로스트립 전이구조 설계)

  • Woo, Dong Sik;Jeong, Jong-Hyeog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2018
  • A compact Q-band waveguide-to-microstrip transition for UAV(Unmanned Aerial Vehicle) radiometer applications is presented. The key features of this transition are simplicity, compactness, easy matching, and lower sensitivity to the dimensions and fabrication tolerances. The simple E-plane patch-type design is insensitive to the backshort cavity enclosure and misalignment between the waveguide and microstrip substrate. The primary parameters are optimized using a three-dimensional(3D) electromagnetic simulator(ANSYS HFSS). It exhibited better than 20-dB return loss at mid-band frequencies with less than 1-dB insertion loss for the back-to-back transition, and a return loss better than 15 dB over the frequency range of 36 GHz to 42 GHz.

Initial Climb Mission Analysis of a Solar HALE UAV (태양광 고고도 장기체공 무인기의 초기 상승 임무 분석)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.468-477
    • /
    • 2014
  • In this research, how a solar powered HALE (high altitude long endurance) UAV (Unmanned Aerial Vehicle) can climb and reach mission altitude, 18km, starting from the ground using only solar energy. A glider type aircraft was assumed as a baseline configuration which has wing area of $35.98m^2$ and aspect ratio of 25. Configuration parameters, lift and drag coefficients were calculated using OpenVSP and XFLR5 that are NASA open source programs, and climb flights were predicted through energy balance between available energy from solar power and energy necessary for a climb flight. Minimum time climb flight was obtained by minimizing flight velocities at each altitude and total time and total energy consumption to reach the mission altitude were predicted for different take off time. Also, aircraft moving distances due to westerly wind and flight speed were calculated.

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.15-22
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV(Unmanned Aerial Vehicle) which is being developed by KARI (Korea Aerospace Research Institute). For teeming the NN(Neural Network), a BPN(Back Propagation Network) with one hidden, one input and one output layer was used. The input layer has seven neurons: variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer uses 6 neurons: degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine, respectively, Database for network teaming and test was constructed using a gas turbine performance simulation program. From application of the learned networks to diagnostics of the PW206C turboshaft engine, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

Power Charge Scheduling and Charge-Ready Battery Allocation Algorithms for Real-Time Drones Services (실시간 드론 서비스를 위한 전원 충전 스케쥴링과 충전 배터리 할당 알고리즘)

  • Tajrian, Mehedi;Kim, Jai-Hoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.12
    • /
    • pp.277-286
    • /
    • 2019
  • The Unmanned Aerial Vehicle (UAV) is one of the most precious inventions of Internet of things (IOT). UAV faces the necessity to charge battery or replace battery from the charging stations during or between services. We propose scheduling algorithms for drone power charging (SADPC). The basic idea of algorithm is considering both a deadline (for increasing deadline miss ratio) and a charging time (for decreasing waiting time) to decide priority on charging station among drones. Our simulation results show that our power charging algorithm for drones are efficient in terms of the deadline miss ratio as well as the waiting time in general in compare to other conventional algorithms (EDF or SJF). Also, we can choose proper algorithms for battery charge scheduling and charge ready battery allocation according to system parameters and user requirements based on our simulation.

Multi Point Cloud Integration based on Observation Vectors between Stereo Images (스테레오 영상 간 관측 벡터에 기반한 다중 포인트 클라우드 통합)

  • Yoon, Wansang;Kim, Han-gyeol;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.727-736
    • /
    • 2019
  • In this paper, we present how to create a point cloud for a target area using multiple unmanned aerial vehicle images and to remove the gaps and overlapping points between datasets. For this purpose, first, IBA (Incremental Bundle Adjustment) technique was applied to correct the position and attitude of UAV platform. We generate a point cloud by using MDR (Multi-Dimensional Relaxation) matching technique. Next, we register point clouds based on observation vectors between stereo images by doing this we remove gaps between point clouds which are generated from different stereo pairs. Finally, we applied an occupancy grids based integration algorithm to remove duplicated points to create an integrated point cloud. The experiments were performed using UAV images, and our experiments show that it is possible to remove gaps and duplicate points between point clouds generated from different stereo pairs.

Decision-Making System of UAV for ISR Mission Level Autonomy (감시정찰 임무 자율화를 위한 무인기의 의사결정 시스템)

  • Uhm, Taewon;Lee, Jang-Woo;Kim, Gyeong-Tae;Yang, Seung-Gu;Kim, Joo-Young;Kim, Jae-Kyung;Kim, Seungkeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.10
    • /
    • pp.829-839
    • /
    • 2021
  • Autonomous system for UAVs has a capability to decide an appropriate current action to achieve the goal based on the ultimate mission goal, context of mission, and the current state of the UAV. We propose a decision-making system that has an ability to operate ISR mission autonomously under the realistic limitation such as low altitude operation with high risk of terrain collision, a set of way points without change of visit sequence not allowed, and position uncertainties of the objects for the mission. The proposed decision-making system is loaded to a Hardware-In-the-loop Simulation environment, then tested and verified using three representative scenarios with a realistic mission environment. The flight trajectories of the UAV and selected actions via the proposed decision-making system are presented as the simulation results with discussion.

Prediction of Rolling Moment for a Hand-Launched UAV Considering the Interference Effect of Propeller Wake (프로펠러 후류 간섭 효과를 고려한 투척식 무인기 롤 모멘트 예측)

  • Sang-Mann, Woo;Dong-Hyun, Kim;Ji-Min, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.114-122
    • /
    • 2022
  • This paper explores three-dimensional unsteady computational fluid dynamic (CFD) analyses with an overset grid technique to analyse the wake effect created by a rotating propeller on a hand-launched unmanned aerial vehicle (UAV). Additionally, the influence of actual aileron deflection on the equilibrium condition of the rolling moment is examined in various hand-launched take-off conditions. The results of this study demonstrate the importance of initial aileron deflection in increasing the initial rolling stability during the hand-launched take-off process. Furthermore, an aerodynamic database is constructed to rapidly predict the aileron set values required for different take-off speeds and angle-of-attacks.

Attack Datasets for ROS Intrusion Detection Systems (ROS 침입 탐지 시스템을 위한 공격 데이터셋 구축)

  • Hyunghoon Kim;Seungmin Lee;Jaewoong Heo;Hyo Jin Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.681-691
    • /
    • 2024
  • In recent decades, research and development in the field of industrial robotics, such as an unmanned ground vehicle (UGV) and an unmanned aerial vehicle (UAV), has been significant progress. In these advancements, it is important to use middleware, which facilitates communication and data management between different applications, and various industrial communication middleware protocols have been released. The robot operating system (ROS) is the most widely adopted as the main platform for robot system development among the communication middleware protocols. However, the ROS is known to be vulnerable to various cyber attacks, such as eavesdropping on communications and injecting malicious messages, because it was initially designed without security considerations. In response, numerous studies have proposed countermeasures to ROS vulnerabilities. In particular, some work has been proposed on generating ROS datasets for intrusion detection systems (IDS), but there is a lack of research in this area. In this paper, in order to contribute to improving the performance of ROS IDSs, we propose a new type of attack scenario that can occur in the ROS and build ROS attack datasets collected from a real robot system and make it available as an open dataset.