• Title/Summary/Keyword: U-Pb 연령

Search Result 63, Processing Time 0.02 seconds

Equilibrium Growth of Allanite and Zircon during Amphibolite-facies Metamorphism (각섬암상 변성작용 중 갈렴석과 저어콘의 평형 성장)

  • Kim, Yoonsup
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • The U-Pb isotopic and rare earth element compositions of zircon were measured using a SHRIMP from a tonalitic gneiss sample DE43 in Daeijak Island, central Korea. Zircon crystals, up to ${\sim}300{\mu}m$ in diameter, rarely contain thin overgrowth rims. In contrast to Paleoproterozoic cores, the $^{206}Pb/^{238}U$ ages of $256{\pm}23Ma(1{\sigma})$, and $221{\pm}7Ma(1{\sigma})$ were yielded from two spot analyses on the overgrowth rims of zircon. The rims are geochemically characterized by low Th/U ratios (<0.01) and strongly depleted light rare earth elements. The Permian-Triassic apparent ages of zircon are consistent with the $^{208}Pb/^{232}Th$ ages dated from allanite ($227{\pm}7Ma(t{\sigma})$) in the same sample within uncertainties, indicating an equilibrium growth of allanite and zircon at ~227 Ma. On the other hand, the younger $^{208}Pb/^{232}Th$ and $^{206}Pb/^{238}U$ ages ($213{\pm}4Ma(t{\sigma})$ and $186{\pm}9Ma(t{\sigma})$, respectively) of allanite may result from Pb loss due to the infiltration of alkali fluids from Late Triassic and Jurassic granitoids nearby.

SHRIMP U-Pb Age Determination for the Gneissic Country Rocks Around the Hongcheon Iron-REE Depsosit (홍천 철-희토류 광상의 편마암질 주변암에 대한 SHRIMP U-Pb 연령측정)

  • Kim, Myoung-Jung;Park, Kye-Hun;Koh, Sang Mo;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.299-305
    • /
    • 2013
  • It is well known that the Hongcheon iron-rare earth deposit is composed of carbonatite-phoscorite complex. We conducted zircon U-Pb age determination for the gneissic country rocks of this deposit. As the result we obtained ca. 1830 Ma, which is somewhat younger than igneous and metamorphic ages of ca. 1870 Ma generally reported from the Gyeonggi massif, suggesting further investigations for the timing and evolution of the Paleoproterozoic activities of the Gyeonggi massif.

SHRIMP Zircon U-Pb Ages of Basement Rocks in the Danyang National Geopark (단양 국가지질공원 기반암류의 SHRIMP 저어콘 U-Pb 연령)

  • Cheong, Wonseok;Han, Giun;Kim, Taehwan;Aum, Hyun Woo;Kim, Yoonsup
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2020
  • We carried out the U-Pb age dating of zircon from basement rocks in the southern part of the Danyang National Geopark. Two migmatitic gneisses composed of biotite±sillimanite±garnet+feldspar+quartz were dated. Leucosomes in the samples were clearly distinguished from their melanosomes. The U-Pb isotopic compositions of zircon from sillimanite- and garnet-bearing migmatitic samples were measured using a secondary ion microprobe, yielding metamorphic ages, 1870±10 Ma (2σ)와 1863±6 Ma (2σ), respectively. 1.87~1.86 Ga metamorphic ages are consistent with those of the Paleoproterozoic low-P and high-T regional metamorphism (1.87~1.85 Ga) in the Yeongnam Massif. The maximum depositional age based upon the apparent 207Pb/206Pb ages of detrital zircon in the samples was estimated as 2.06 Ga, and thus sedimentation age of the protolith of the migmatitic gneisses ranges between 2.06 and 1.87 Ga.

SHRIMP U-Pb Ages of the Yongyudo biotite Granites (용유도 흑운모화강암의 SHRIMP U-Pb 연령)

  • Kim, Dong-Yeon;Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.393-403
    • /
    • 2014
  • U-Pb ages were determined from the Yongyudo biotite granites from western parts of Gyeonggi massif. The results show that the emplacement age of the Yongyudo biotite granite is ca. 227-230 Ma. Such age result that is somewhat older than previous reported ages, suggesting further investigations for the timing and evolution of the Jurassic granites of the western Gyeonggi massif.

SHRIMP U-Pb Ages of the Namwon and Sunchang Granites (남원화강암과 순창화강암의 SHRIMP U-Pb 연령)

  • Jo, Hui Je;Park, Kye-Hun;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.197-208
    • /
    • 2013
  • The Namwon and Sunchang granites are neighbouring plutons intruding the Yeongnam massif and the Okcheon metamorphic belt, respectively in the southwestern part of the Korean peninsula. In this study, SHRIMP zircon U-Pb ages are determined from these plutons. The results show that the emplacement age of the Namwon granite is $185.8{\pm}0.9(2{\sigma})$ Ma. We obtained $175.0{\pm}2.0(2{\sigma})$ Ma from the northern part and $179.8{\pm}0.9(2{\sigma})$ Ma from the central part of the Sunchang granite, yielding $177.4{\pm}1.3(2{\sigma})$ Ma as the average age of the pluton. Such age results confirm that the Honam shear zone, which cause marked deformation of the Sunchang granite, was active after ca. 175 Ma.

Comparison of U-Pb Age Distribution Characteristics of Detrital Zircons in the Age-unknown Geumsusan Formation and Jangsan Formation of the Joseon Supergroup (조선누층군 장산층과 시대미상 금수산층의 쇄설성 저어콘 U-Pb 연령분포 특성 비교)

  • Cho, Kyungo;Park, Kye-Hun;Song, Yong-Sun;Choi, Ji Eun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.49-64
    • /
    • 2019
  • SHRIMP U-Pb ages were analyzed for the detrital zircons separated from the Jangsan Formation of the Lower Paleozoic Joseon Supergroup in the Taebaeksan Basin and the Mungyeong area. Similar to the previously reported from Taebaeksan basin, the detrital zircons show strong peaks near the age of about 1.8-2.0 Ga and about 2.5 Ga. This indicates that the detrital zircons of the Jangsan Formation originated from the basement rocks of the Korean Peninsula. Although the age of the basement rocks on the Korean Peninsula is mainly concentrated in the 1.8-2.0 Ga, the age of about 2.5 Ga is clearly visible in the Jangsan Formation, suggesting that the age distribution of the basement rocks exposed to the surface at that time may be somewhat different from now. The detrital zircons of age-unknown Geumsusan Formation distributed between Danyang and Jecheon also show the U-Pb age distribution with a strong peaks around 1.8-2.0 Ga and 2.5 Ga, which is very similar to that of the Jangsan Formation, suggesting a possibility that the two formations are likely to be correlated.

Zircon U-Pb age of the Heuksan-do Granite: Implication of the Magmatism at ca. 114 Ma (흑산도 화강암의 저어콘 U-Pb 연령: 약 114 Ma 화성활동의 의미)

  • Lee, Tae-Ho;Park, Kye-Hun;Song, Yong-Sun;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • We report an Early Cretaceous zircon U-Pb age ($113.9{\pm}1.2Ma$) for the Heuksan-do granite located about 90km from Mokpo offcoast of the southwestern Korean peninsula. At this Aptian/Albian boundary, widespread igneous activities occurred not only in the Korean peninsula but also in the eastern China and Japan. We raise the possibility that the flat-slab subduction and delamination triggered such an episodic igneous activity over the large areas of East Asia.

The Late Cretaceous Emplacement Age of Masan Hornblende-Biotite Granite (마산 각섬석-흑운모 화강암의 연령: 후기 백악기 정치연령)

  • Lee, Tae-Ho;Park, Kye-Hun;Kim, Jeongmin;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • We have dated the K-Ar, Ar-Ar and U-Pb ages of the Masan hornblende-biotite granite in the southern Cretaceous Gyeongsang basin to constrain its emplacement age. The ~108 Ma hornblende K-Ar age obtained in the study is similar to the previously reported Rb-Sr age. However, the single grain total fusion $^{40}Ar/^{39}Ar$ dating on hornblende failed to yield statistically meaningful ages because the isotopic system was open during its alteration. Thus the hornblende K-Ar age in the study is also unlikely to be reliable. The single grain total fusion $^{40}Ar/^{39}Ar$ dating on biotite yielded an average age of $75.8{\pm}3.0Ma$. Apart from scattered data in the range of ~45-75 Ma, the average age increased to ~80 Ma. The SHRIMP and LA-MC-ICPMS U-Pb isotopic compositions of zircon from the Masan hornblende-biotite granite yielded its emplacement age as $87.6{\pm}2.7Ma$ and $86.8{\pm}0.4Ma$, respectively. It is thus likely that the ~80 Ma $^{40}Ar/^{39}Ar$ age of biotite might reflect the cooling age of Masan hornblende-biotite granite or the thermal influences from later intense igneous activities in the Gyeongsang basin.

LA-ICP-MS U-Pb Zircon Age of the Hongjesa Granite in the Northeast Yeongnam Massif (영남육괴 북동부 홍제사 화강암의 LA-ICP-MS U-Pb 저콘 연대)

  • Lee, Ho-Sun;Park, Kye-Hun;Song, Yong-Sun;Kim, Nam-Hoon;Yuji, Orihashi
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.103-108
    • /
    • 2010
  • U-Pb zircon age for the Hongjesa granite, in the northeast Yeongnam massif, was determined using LA-ICP-MS. We obtained upper intercept age of $2013^{+30}/_{-24}(2{\sigma})$ Ma, indicating Paleoproterozoic granitic magmatism together with the Buncheon and Pyeonghae granite gneisses of the region.

SHRIMP U-Pb Zircon Ages of the Jinju Formation and Silla Conglomerate, Gyeongsang Basin (경상분지 진주층 및 신라역암의 SHRIMP U-Pb 저어콘 연령분포 및 그 의미)

  • Lee, Tae-Ho;Park, Kye-Hun;Chun, Jong-Hwa;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.89-101
    • /
    • 2010
  • To constrain the depositional ages of the Gyeongsang sedimeantary formations, SHRIMP U-Pb ages were determined from detrital zircons in three samples: (1) a pebble-bearing sandstone from the lowermost Jinju Formation of the Sindong Group and (2) two conglomerates from the Silla Conglomerate of the Hayang Group. Their concordia ages are $112.4{\pm}1.3(2{\sigma})$ Ma and $110.4{\pm}2.0(2{\sigma})$ Ma respectively. Such ages represent the maximum deposition ages for the lowermost Jinju Formation and Silla Conglomerate, indicating the deposition of the Jinju Formation started from late Aptian and lasted to early Albian, then deposition of the rather thin Chilgok Formation and Silla Conglomerate was followed during the Albian. The age distribution of the analyzed detrital zircons indicates the presence of protoliths, or zircons derived from them, regarding a wide span of igneous activities from Mesozoic to Archean. Among such ages, there are Mesoproterozoic, Neoproterozoic and Paleozoic igneous activities, which have not been known or seldom reported from Korean peninsula. These ages further suggest the possible presence of rocks with such ages during the deposition periods or their derivation through a long river system developed into the continents at the time of deposition.